assistant professor in the Mechanical Engineering-Engineering Mechanics Department at Michigan Technological University since 2011. She is the founding director of the Nonlin- ear and Autonomous Systems Laboratory (NASLab). Her research interests include robotics, dynamics and control of autonomous systems, and energy autonomy. She is a recipient of 2015 National Science Foundation CAREER award and 2015 Office of Naval Research YIP award.Ms. Saeedeh Ziaeefard, Michigan Technological University Saeedeh Ziaeefard is a PhD student and research assistant with Nonlinear and Autonomous Systems Laboratory (NASLab) in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. Her
the approaches to solving the problems but can't give each other the answers. Such mutual learning interaction between students is beneficial because students will either be required to articulate their knowledge of a subject in ways that another student can understand or will profit from getting an alternative perspective from a peer on how to approach a problem.For the author’s courses, students are provided a variety of ways to demonstrate learning of thecourse material. The HW problem sets have typically counted for around 25% of the coursegrade. All courses include a laboratory and/or project component that counts for about 25% ofthe course grade, while two exams and a cumulative final count for the remaining 50%. Sincethe LON
, Electrical and Mechanicalengineering degree programs have historically required their students to complete a coordinatedMultidisciplinary Engineering Laboratory sequence.2 Finally, multidisciplinary capstone courseshave been experimented with at CSM since the early nineteen nineties.3 Even with this strongfoundation, there are significant challenges to running a successful, multidisciplinary capstoneprogram.Capstone programs differ from other multidisciplinary courses in several ways. Freshmanexperiences don’t have the same expectations to deliver discipline specific technical content thatare required at the senior level. For that reason, a closer parallel to multidisciplinary capstonemight be found in multidisciplinary laboratory sequences
Science & Technology. His research focuses on spectral imaging for predicting food quality (beef tenderness) and early diagnosis of human diseases (peripheral arterial disease). He has active research in the area of food safety engineering through integration of heat transfer model and predictive microbial growth/death models for food safety risk assessment. Every fall, he teaches a large sophomore- level class on engineering properties of biological materials, which consists of both lectures and laboratory sessions with an enrollment of more than 70 students. Every spring, he teaches a junior-level course on principles of bioprocess engineering which has an enrollment of about 25 students.Dr. Ashu Guru, University of
graduate students responded to the question of theirconfidence in their ability to mentor students at the beginning and towards the end of theexperience. Figure 6 (a) shows the confidence the graduate student had in themselves to mentorothers in research, while Figure 6 (b) demonstrates the students’ evaluation of the program interms of helping them develop their confidence in mentoring.Table 2 which summarizes some of the statements made by the students themselves, showinghow they reacted to the experiences they were provided in the laboratory setting. It is clear fromtheir responses that the students gained a substantive experience that they would not have had theopportunity to have in the classroom. In addition, these students were able to
Paper ID #18366Industry Funded Research Impacts on Engineering Faculty’s Research Ex-periences: A Review and Synthesis of the LiteratureMr. Eric Holloway, Purdue University, West Lafayette (College of Engineering) Eric Holloway currently serves as the Senior Director of Industry Research in the College of Engineering at Purdue University, where he focuses on industry research in the College of Engineering. From 2007-2013, Eric served as the Managing Director and the Director of Instructional Laboratories in the School of Engineering Education at Purdue University. As Director, he was in charge of the building and
challenges of this environment is that on a given day, all classroomsare used at about ninety percent capacity. Hence, we do not have the facilities orinfrastructure to move our massive amounts of introductory physics courses into a studioor laboratory based setting for some of the larger scale pedagogy initiatives. Further, withsuch saturation of our overall facilities, professors are typically never in the sameclassroom twice per day, making even tasks such as carrying demonstrations orspontaneous live experiments cumbersome. The setting at Wentworth is not unique andwe believe that our findings will benefit similarly sized institutions that are consideringthe inclusion of MLM content in their introductory physics sequence. Conducting thestudy at
social, environmental, and economic aspects ofsustainability and triple bottom line decision analysis. As we face growing populations andlimited resources, innovative approaches decision analysis will be important for engineers of the21st century and beyond.A key challenge in the course was the integration of life cycle assessment (LCA) software intothe curriculum due to (1) accessibility to the proprietary software and (2) a lack of previousexperience with the software. SimaPro 8 is proprietary software that was available to students inone computer laboratory. Unfortunately, online versions of this software were not readilyavailable and some students expressed frustrations in accessing the laboratory. Future versions ofthe course could include
and reduce the limitations in everyday life caused by back problems.The final device uses proven pulsed electromagnetic field therapy techniques which have beendemonstrated to be safe and effective for human use [1].The following procedural steps were undertaken by the students during the described SeniorDesign Project: 1. Formation of the team 2. Project and advisor selection 3. Literature survey 4. Creation and presentation of the design proposal 5. Cost and budget analysis 6. Design and development of the device 7. Laboratory testing of the developed device (and corrections if necessary) 8. Final presentationRationale of the project.Low back pain is a very common health problem in the general population and
use of Application Programming Interfaces (APIs) providedby manufacturers and the second approach is to teach the course with the systems approachwithout focusing on hardware, instruction set, and assembly language. Along the same lines, anexample of introducing IoT technology in an embedded networking course, specifically using theTexas Instruments (TI) ARM-based Connected Launchpad is documented in [6]. The design ofan Embedded Systems Laboratory to support rapid prototyping of robotics and IoT isdocumented in [7]. An interesting and creative approach was used to disseminate the informationneeded for both traditional laboratory experiments and student design projects; an extensive Wikisite called the “mbed cookbook Wiki” was used to provide
. Serving as a model for waterquality and quantity management, students engaged in hands-on experiences using a small-scalewetlands setup in the Cook Laboratory for Bioscience Research at Rose-Hulman Institute ofTechnology. In independent research projects, undergraduate research students measured waterquality parameters including TSS, BOD and nutrients (nitrogen and phosphorus) and optimizedremoval of various contaminants. In the classroom in Environmental Engineering Laboratory,students measured water quality parameters of various water bodies within a watershed andresearched the impacts of excess nutrients on water quality and economies. Students toured theconstructed treatment wetlands and were able to learn directly from a peer who had
Paper ID #29306An Advanced Technological Education Project for High ValueManufacturing: Lessons LearnedDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is a professor in the Department of Engineering Technology and Industrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on
Engineering, California Baptist University, Class of 2020, gibsonfleming@outlook.com c American Society for Engineering Education, 2020 An Electronics Lab Project—Tutorial and Design of Printed Circuit Board “big_blinky”Abstract - Laboratory projects can be strategically used to improve the Electrical and ComputerEngineering (ECE) curriculum across all four years, according to National Science Foundation(NSF) research in which we participated. In this “spiral model” approach, lab component themesare introduced in the freshman year and revisited with increased sophistication andinterconnection in the following years. Labs are thus used as a “cohesive framework” thatconnects and
% Pre PostFigure 2. Comparison of pre- and post-survey confidence levels (Version 2 results only)Self-identified needsSixty-five students responded to the open-ended question, “What types of information, skills ortools do you foresee needing to conduct your research project? Include anything that comes tomind.” An inductive coding process was used to analyze these responses, which identified sixgeneral categories of need: information, information skills, coding skills and software,scientific/technical skills, laboratory resources, and general professional skills. Table V liststhese categories along with examples of some specific needs that emerged in each category.(Note that this is not an exhaustive list of all needs that were expressed
-understand educationmodules have the potential to enhance undergraduate students’ understanding of materials,mechanics, and even thermal concepts.It has been well-recognized that solid mechanics is one of the most critical and fundamentalengineering topics in multiple engineering education programs, such as aerospace, civil, industrial,mechanical, and petroleum engineering disciplines. Current solid mechanics education, however,mainly focuses on theoretical analysis with limited experimental demonstration. In mostengineering programs, the theoretical analysis is delivered to students via a series of courses, suchas Statics, Dynamics, Materials of Mechanics. The experimental demonstrations are only includedin one laboratory course related Materials
these problems. They must also be able todevelop their own brand and sell themselves as teachers and researchers. According to the deansinterviewed, the most common ways EM could help faculty is through enhancing the impact oftheir research and having them place more value in educational innovation. This is exemplifiedperfectly by the following quote from a dean J at an R1/R2 private institution: I am really speaking about using research funding to develop technologies that have, generally, commercial application, but that could be put to broader use beyond an individual laboratory. One of the descriptors I've used is, "science that doesn't stop at the laboratory door." Meaning, publishing the paper is wonderful, but
well as those who may already hold a college degree andseek training aligned with this viable career path. To prepare the targeted population to fulfillthese needs, the program will focus on applying theories and hands-on skills in the developmentof marketable products, efficient processes, and designs that reflect an awareness of howtechnology meets the needs of society today and in the future. Further, the AAS.MET programwill provide extensive classroom study along with laboratory explorations. The degree is beingdeveloped based on the Engineering Technology Accreditation Commission (ETAC) of theAccreditation Board for Engineering and Technology, Inc. (ABET) accreditation standards. Oneof the long term goals of the program is to obtain ABET
on applications of nanotechnology and materials scienceconcepts. Two annual events crown the intervention: a) an annual club meeting at the universitycampus, and b) a Nanodays event, where each club conducts nanotechnology demonstrations attheir own schools. Furthermore, a group of high school students and teachers is selected toparticipate in a 4-week Summer Research Program, in the Center’s laboratories. Collegeadmissions data show that 75% (N=12) of the research summer program participants and 42% ofstudents admitted from schools with MSE clubs have enrolled at UPRM, with a 94% second-year retention rate. For the schools with MSE clubs, between 49% and 75% of students whochose to major in Science, Engineering or Technology programs were
mechanics of anisotropic ductile fracture Graduate research assistant, University of Illinois at Urbana-Champaign (10/2004–04/2009) - DOE Hot rolling scrap (Investigation of edge cracking of AA2024 using a crystal- plasticity-based damage model) Graduate research assistant, Seoul National University (03/1993–02/1995)Prof. Jun H. Park, Tongmyong University Jun-Hyub Park received the B.S. degree from Korea University, Seoul, Korea, in 1985, the M.S. and Ph.D. degrees in Mechanical Engineering from Korea Advanced Institute of Science and Technology, Taejeon, Korea, in 1987, 1995, respectively. He was a member of research staff of MEMS Laboratory in Samsung Advanced Institute of Technology. He works in School of Mechatronics
laboratory. The goal is to develop a strongfoundation for both students’ future academic work and professional career. Successfulstudents will be able to do the following: produce engineering drawings and models both byhand and using the SolidWorks CAD package, visualize objects in three dimensions, work inteams to perform various elements of engineering design, and demonstrate effective technicalcommunication skills. In the syllabus, “Engineering design is more than just tinkering; it isthe logical application of scientific principles to a tangible design. It involves creativity,dedication, thought, research, ingenuity, and work. It may well be your first experience in"real world" engineering.” are put special emphasis. According to the topics
Paper ID #24541Maker Education in a Sino-American Joint Institute: Taking Sichuan Uni-versity - Pittsburgh Institute as an ExampleMr. Dong Liang, Sichuan University Dong Liang is Laboratory Director in Sichuan University-Pittsburgh Institute (SCUPI). He is in charge of building teaching laboratories and oversight the routine use and maintenance of the lab facilities. He has a B.S. from Northwestern Polytechnical University in China in Flight Vehicle Manufacture Engineering and M.S. from the National Institute of Applied Sciences in France in Mechanical Engineering. Before joining in SCUPI, he has worked in GE Aviation as a
algebra, plane geometry, trigonometry, pre-calculus, and/or calculus • Two years of science with an average grade of B including at least one year of chemistry with a laboratory • SAT-I (MATH only) score of 560 or higher; SAT-R (MATH only) score of 580 or higher; or an ACT (MATH only) score of 26 or higher • Four years of English Applicants whose native language is not English must achieve a minimum TOEFL score of 550 (Paper Based Test), 79 (Internet Based Test), or 213 (Computer Based Test), or a minimum IELTS score of 6.5. As an alternate language consideration, a SAT-R (Reading and Writing) minimum score of 560 or an ACT (English) minimum score of 23 may be submitted in
measuring instruments as an entrepreneur. He has delivered invited short courses in Penang, Malaysia and Singapore. He is also the author of a textbook in power electronics, published by Prentice-Hall, Inc. His other books are, Analog and digital communication laboratory, and First course in Digital Control, published by Creatspace (Amazon). His professional career is equally divided in academia and industry. He has authored several research papers in IEEE journals and conferences. His current research is focused on renewable energy technology and wireless power transfer.Prof. Ashfaq Ahmed P.E., Purdue University Northwest Ashfaq Ahmed is a Professor of Electrical and Computer Engineering Technology at Purdue University
industrial engineering from Texas A&M University. His educa- tion and research interests include project management, innovation and entrepreneurship, and embedded product/system development.Dr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on
undisturbed soil samples that in many cases are difficult to collect. Soils are inherentlyrandom media and the information on the material properties and in situ conditions will alwaysbe incomplete if based only on small sample lab testing. Unlike other branches of engineeringwhere practitioners have greater control over the materials they use, geotechnical engineeringdepends heavily on field exploration and experience. Unfortunately, geotechnical engineeringeducation has been mainly focused on a limited number of small sample laboratory experimentsbecause it is geographically and cost prohibitive to conduct actual field tests for the students.Currently, there is a prevalent lack of an affordable and reliable way to educate and train studentson the
Computational modeling and interdisciplinary projects for engineering technology students The advances in nanotechnology, tissue engineering, and robotics has precipitated the need forengineering technology students who can understand and contribute to simulation and development ofcomputer models for complex command, communications, biological and control systems.The engineering faculty at our university is developing multidisciplinary projects/classes, which includehands-on application-oriented laboratory exercises, which can actively engage students. These laboratoryprojects will also be helpful to students who will take capstone senior project coursework.This paper will discuss the new, interesting multidisciplinary projects
construction in an efficient manner.The team put significant effort into providing a high quality facility that can be used for teachingand research purposes. While the design project worked well as a capstone project, theconstructed water channel will be used as a valuable facility in both Mechanical Engineering andElectro-Mechanical Engineering Technology programs.1. IntroductionFluid Dynamics is an inseparable part of the Mechanical Engineering world and manyuniversities include lab activities in the area of Fluid Dynamics in their curriculum. However,commonwealth campuses have very limited access to laboratory facilities where real liferesearch experiences can take place. Previous studies such as Kubesh and Allie’s have stated thatthe design and
for the parents’ and students’ decisions to enroll in the campsand further act as an outline for the camp itself. Summer 2014 – Physical Sciences This camp is for students with a passion for physical sciences and engineering. By the end of the week you will be able to impress your family and friends with cool experiments and scientific facts! This camp will explore many fascinating topics including experimentation with LEGO Mindstorm Robotics. Participants will get a chance to work in University of Calgary classrooms and laboratories and they will be taught by University of Calgary students in the faculties of Science, Engineering and Education. A portion of the activities are based on the
x x x x x x Reciprocal Program x x x Laboratory Bench Fee x x University Support x x Student Exchange Agreement x x x NSF Support x x x x x x x x x Fellowship funding x x Undergraduate participation x x x x x x x x x Community College x x x participation
, inquiry-based K-12 STEM curricula (ii)Aerospace Education Laboratory (AEL) (iii) Family Connection (FC) – parental/guardianinvolvement and outreach.The program team developed curriculum enhancement activities (CEAs) by adopting a well-established NASA STEM curriculum with problem-based learning at its core and integrated3D printing technology, sensor-based measurement systems, and mini Unmanned AerialVehicle (UAV) design activities to enhance authentic and experiential learning experiences.Integration of these technologies added an additional dimension to the value of scientificinquiry and shows how to apply scientific knowledge, procedures and mathematics to solvereal problems and improve the world we live in. The curriculum supported the