experiences.Future research should consider exploring teamwork dynamics in diverse URPs across differentgeographical and disciplinary contexts to generalize the findings as well as compare teamworkexperiences across various URPs to understand the impact of different institutional cultures andprogram structures. Additionally, longitudinal studies could offer a deeper understanding ofhow teamwork skills developed in URPs impact students’ professional careers. References[1] K. W. Bauer and J. S. Bennett, “Alumni Perceptions Used to Assess Undergraduate Research Experience,” J. High. Educ., vol. 74, no. 2, pp. 210–230, 2003.[2] D. Lopatto, “Undergraduate Research Experiences Support Science Career Decisions and Active Learning,” CBE—Life Sci. Educ., vol
fiveundergraduates identify as disabled [11]. Yet, in engineering such substantive data is almostentirely unavailable. The National Science Foundation (NSF)’s 2023 Diversity and STEM:Women, Minorities, and Persons with Disabilities report states, “compared with data for othergroups, data on postsecondary degrees earned by persons with disabilities are limited” [1] and assuch, provides no data on disabled engineering undergraduate students and diminutive data ondisabled engineering doctoral students. Whether it be funding, available statistics, access, orsupport, the lack of care toward disabled students in engineering is apparent and intentional [12]–[16].This paper explores the availability of data for disabled students in postsecondary engineeringprograms
Affecting the Future Career Pathway Decisions of Lower-income Computing Students1. IntroductionWithin research on broadening participation in computing, the experience and perspectives ofundergraduate students have been important elements of exploration. As undergraduate studentsare experts of their own experience, conducting research that focuses on understanding theirperspective can help those who organize programmatic efforts to respond to student needs andconcerns. This paper emerges from the context of a specific National Science Foundation (NSF)-funded Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) program.As with all S-STEM programs, Florida Information Technology Graduation
+ stress OR Latin* student + stress OR Indigenous student + stress”, “Black student + distress OR Latin* student + distress OR Indigenous student + distress”, “Black student + trauma OR Latin* student + trauma OR Indigenous student + trauma.”To appropriately scope the literature review, we used multiple exclusion criteria. First, anyliterature focusing on faculty, graduate students, or postdoctoral students was omitted. Second,literature published before the year 2000 was excluded as much has changed in the field oftrauma studies since the 1990’s. Lastly, any guest editorials or conference proceedings that didnot include a paper were excluded from the literature review.After an initial search through the journal databases, we screened the
, “Software Carpentry: Getting scientists to write better code by making them more productive,” Computing in Science & Engineering (CiSE), vol. 8, no. 6, pp. 66–69, Nov. 2006. [8] A. Simperler and G. Wilson, “Software Carpentry – get more done in less time,” arXiv:1506.02575, Jun. 2015. [9] B. K. Weaver, “The efficacy and usefulness of Software Carpentry training: A follow-up cohort study,” Master’s thesis, The University of Queensland, 2019.[10] A. Berg, S. Osnes, and R. Glassey, “If in doubt, try three: Developing better version control commit behavior with first year students,” in ACM Technical Symposium on Computer Science Education (SIGCSE), Feb. 2022, pp. 362–368.[11] V. Garousi, G. Giray, and E. T¨uz¨un, “Survey of the
/10.1364/AO.32.001154.[2] P. K. Koech, M. Ogini, S. Mohan, A. Alice Francis, M. Deo, S. Albin, and K. B. Sundaram, “Characterization of Silicon Nanowires Reflectance by Effective Index Due to Air-Silicon Ratio,” ECS Transactions, 89(4), 17–30, 2019. https://doi.org/10.1149/08904.0017ecst[3] S. Patchett, M. Khorasaninejad, O, N., and S. S. Saini, “Effective index approximation for ordered silicon nanowire arrays,” Journal of the Optical Society of America B, 30(2), 306. 2013. https://doi.org/10.1364/josab.30.000306.[4] F. Kimeu, S. Albin, K. Song, and K. C. Santiago, “ALD-passivated silicon nanowires for broadband absorption applications,” AIP Advances, 11(6), 065101, 2021. https://doi.org/10.1063
factors were attributed to the nativelanguage being English (yes/no).Results and DiscussionTable 1 Breakdown of averaged Turnitin scores for each submission (S). Turnitin Scores (%) All YES Eng NO Eng YES Biol NO Biol YES Native NO Native S #1 20 ± 19 22 ± 12 15 ± 16† 20 ± 19 23 ± 19 14 ± 12 25 ± 21† S #2 14 ± 14* 13 ± 10** 10 ± 13* 12 ± 10** 19 ± 18† 10 ± 7** 17 ± 16**,†YES/NO refers to their background in: Biol = Biological Sciences, Eng = Engineering. *,**denotes statistically significant differences (t-test) between submissions (*p<0.05, **p<0.01); †between YES and NO categories (†p<0.01
. 4ReferencesAnderson, E.L., Williams, K.L., Ponjuan, L., & Frierson, H. (2018). The 2018 Status Report onEngineering Education: A Snapshot of Diversity in Degrees Conferred in Engineering, Association ofPublic & Land-grant Universities: Washington, D.C.Anzaldúa, G., & Moraga, C. (1981). This bridge called my back. New York: Kitchen Table.Conchas, G. Q., & Acevedo, N. (2020). The Chicana/o/x dream: Hope, resistance, and educationalsuccess. Harvard Education Press.Hurtado, A. (2003). Voicing Chicana feminisms: Young women speak out on sexuality and identity (Vol.1). NYU Press.McAlear, F., Scott, A., Scott, K., & Weiss, S. (2018). “Women and girls of color in computing.” Databrief. Kapor Center, 2018. Available: https://www.wocincomputing.org
Regional Education Board.Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education inP‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.Gottfried, M. A., & Plasman, J. S. (2018). Linking the timing of career and technical educationcoursetaking with high school dropout and college-going behavior. American EducationalResearch Journal, 55(2), 325-361.Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do studentslearn?. Educational psychology review, 16, 235-266.Lynch, S. J., Peters-Burton, E., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., &Means, S. (2017). Understanding inclusive STEM high schools as opportunity structures forunderrepresented students: Critical
this work was provided by the USA National Science Foundation's ImprovingUndergraduate STEM Education (IUSE) program under Award No. 1836504. Any opinions,findings, and conclusions or recommendations expressed in this material are those of the authorsand do not necessarily reflect the views of the National Science Foundation.References[1] L. Gelles, S. M. Lord, G. D. Hoople, D. A. Chen, and J. A. Mejia, “Compassionate Flexibility and Self-Discipline: Student Adaptation to Emergency Remote Teaching in an Integrated Engineering Energy Course during COVID-19,” Education Sciences, vol. 10, no. 11, p. 304, 2020. https://doi.org/10.3390/educsci10110304[2] B. Momo, G. D. Hoople, D. A. Chen, J. A. Mejia, and S. M. Lord, “Broadening
of students. References[1] S. Olson and D. G. Riordan, "Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics. Report to the President," Executive Office of the President, 2012.[2] A. W. Astin, "College retention rates are often misleading," Chronicle of Higher Education, vol. 40, no. 5, pp. A48-A48, 1993.[3] A. W. Astin, "What matters in college? Four critical years revisited," San Fran, 1993.[4] R. M. Hall and B. R. Sandler, "Out of the Classroom: A Chilly Campus Climate for Women?," 1984.[5] S. M. Lord, M. M. Camacho, R. A. Layton, R. A. Long, M. W. Ohland, and M. H. Wasburn
: Undergraduate Academic Policy Trends across Institutions over the Last Thirty Years INTRODUCTIONMIDFIELD (Multiple Institution Database for Investigating Engineering LongitudinalDevelopment) is a database, made up of multiple higher education institutions across the U.S.,which is intended to allow for the easy comparison of the institutions. The MIDFIELD databaseincludes data from the late 1980’s until present, which encompasses the SAT/ACT scores,students’ GPA and major for each semester, students’ attained degrees, year graduated, and otherpieces of data. However, in order to better understand the differences across institutions, anunderstanding of academic policies should be conducted
interested who transferred to Virginia Techfrom regional community colleges. To date we have interviewed 28 individuals, including fivefocus group participants. The pool includes 11 women, one (male) underrepresented student,seven first-generation college students, and 14 students who transferred from communitycolleges.AcknowledgementsThis material is based upon work supported by the National Science Foundation under GrantNumber 1734834. Any opinions, findings, and conclusions or recommendations expressed inthis material are those of the author(s) and do not necessarily reflect the views of the NationalScience Foundation. We also wish to thank Ms. Claudia Desimone for help with data collection.References[1] M. Boynton, C. A. Carrico, H. M
GRIT with retention-to-graduation with the correlation of admissions variables to retention-to-graduation. Admissions variables were originally selected because they predict retention; the study will examine whether GRIT is more, less or additionally predictive of student success.Introduction“Let me tell you the secret that has led to my goals. My strength lies solely in my tenacity.”Louis PasteurThe Grit Scale was developed by Dr. Angela Duckworth in 20071 to measure the personalitytraits of perseverance and passion for long-term goals. In Duckworth 20092 The Short Grit Scale(Grit–S) was shown to have internal consistency, validity and improved psychometric properties.Various studies have associated GRIT, as measured by the Grit-S scale, with
‘selection’ (shown in yellow)or ‘non-selection’ (shown in pink) of renewable energy were described in a box. Figure 7. Group 1’s (girls) decision-making Figure 8. Group 2’s (girls) decision-making process in the first discussion
GPA at thetime of graduation.References1. S. Sorby, “Educational Research in Developing 3-D Spatial Skills for Engineering Students,” International Journal of Science Education, vol. 31, no. 3, pp. 459-480, 2009.2. J. Wai, D. Lubinski, and C. P. Benbow, “Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance,” Journal of Educational Psychology, vol. 101, no. 4, pp. 817-835, 2009.3. M. B. Casey, E. Pezaris, E., and R. L. Nuttall, “Spatial ability as a predictor of math achievement: the importance of sex and handedness patterns,” Neuropsychologia, vol. 30, pp. 35-40, 1992.4. D. Halpern, D., “Sex differences in cognitive abilities, Third Edition,” Mahwah, NJ
curriculumdesigners to develop AI education programs that are not only technologically advanced but alsoethically informed and culturally sensitive. Addressing the identified gaps and advocating forresearch in underexplored areas will be crucial in shaping a future where all students are well-prepared for the AI-driven world.Table of ContentsAbstract1. Introduction2. Background 2.1 The Emergence of AI in Education 2.2 Integration of AI Literacy 2.3 AI4K12's Five Big Ideas3. Methods 3.1 Planning the Review 3.1.1 Identifying the Need for the Review 3.1.2 Specifying the Research Questions 3.1.3 Developing the Protocol for Review 3.2 Conducting the Review 3.2.1 Search Strategies
instruments to assess the relationshipbetween PMP participation and individual-level persistence predictors, such as engineeringidentity, sense of belonging, and student thriving. Future longitudinal analyses that trackstudents’ enrollment in the school of engineering and time-to-degree completion will also revealif supporting first-year students during their transition to college yields ongoing benefits as theyprogress through their academic careers.References[1] J. P. Martin, S. K. Stefl, L. W. Cain, and A. L. Pfirman, “Understanding first-generation undergraduate engineering students’ entry and persistence through social capital theory,” Int. J. STEM Educ., vol. 7, no. 1, p. 37, Aug. 2020, doi: 10.1186/s40594-020-00237-0.[2] S. Secules
, vol. 1, S. H. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, B. Newberry, Eds. Springer, pp. 171-189, 2015.[17] E. A. Cech, “The (mis)framing of social justice: Why ideologies of depoliticization and meritocracy hinder engineers’ ability to think about social injustices,” in Engineering education for social justice: Critical explorations and opportunities, vol. 10, J. Lucena, Ed. Springer, pp. 67-84, 2013.[18] E. A. Cech and H. M. Sherick, “Depoliticization and the structure of engineering education,” in International perspectives on engineering education: Engineering education and practice in context, vol. 1, S. H. Christensen, C. Didier, A. Jamison, M. Meganck, C. Mitcham, B
):A number of users described their strategies for overcoming the common challenges at work. Anexample of a helpful approach was to use noise-canceling headphones at work and listen tobackground music. In response to P4's story about leaving their headphones and how they becameoverwhelmed by forgetting their Airpods, users shared their suggestions and stories about similarexperiences. Most of them mentioned that it had happened to them before in the past and that theyhad backups for their AirPods. In several comments, users expressed the difficulty of workingwithout their Air pods. For instance, P24 said, "I completely agree with you. If I forget my earbuds,I cannot work. I cannot pay attention to anything without something playing in my ear
. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the views of the National ScienceFoundation.References[1] C. B. Zoltowski, P. M. Buzzanell, A. O. Brightman, D. Torres, and S. M. Eddington, “Understanding the Professional Formation of Engineers through the Lens of Design Thinking: Unpacking theWicked Problem of Diversity and Inclusion,” ASEE Annu. Conf. Expo. Proc., Jun. 2017, Accessed: Dec. 06, 2022. [Online]. Available: https://par.nsf.gov/biblio/10036285-understanding-professional-formation-engineers- through-lens-design-thinking-unpacking-thewicked-problem-diversity-inclusion[2] B. Frank, D. Strong, R. Sellens, and L. Clapham
graduate education for improvingtechnical and professional skills of graduate education has demonstrated that it has potential inaddressing the project goals. For this model to be successful, several requirements are critical. Asdemonstrated above, teams are more successful when effective scaffolds are employed to supportthe co-creation process. These scaffolds need to come from supportive and engaged researchadvisors of graduate students who can work collaboratively with an agreed-upon set of goals andobjectives for their students’ success in this effort. Throughout the project, mechanisms formaintaining and exercising acquired skills need to be provided. We also believe that it isimportant to identify the specific product(s) that co-creating
of the mentoring sessions. Two of the mentors interviewed were Deans ofEngineering and two were faculty members. During an individual 30-minute interview, each wasasked the following questions: 1. I understand that you have served as a mentor for at least one of the KIND speed Mentoring workshops. What was the topic for the mentoring session(s) that you led? 2. Approximately how many individuals participated in your session(s)? 3. May I ask you to briefly describe your impressions/experiences of the session(s)? 4. What did you think went particularly well with the session(s)? 5. Were there any aspects of the session(s) that proved particularly challenging or that you wish you had approached differently? 6. Have you
Psychologist, 34(1), 118-133. https://doi.org/10.1177/0011000005282374Bowman, P. J. (2013). A Strengths-Based Social Psychological Approach to Resiliency: Cultural Diversity, Ecological, and Life Span Issues. In S. Prince-Embury & D. H. Saklofske (Eds.), (pp. 299-324). Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-4939-3_21Brooms, D. R., & Davis, A. R. (2017). Exploring Black Males' Community Cultural Wealth and College Aspirations. Spectrum: A Journal on Black Men, 6(1), 33-33. https://doi.org/10.2979/spectrum.6.1.02Burrell, J. O., Fleming, L., Fredericks, A. C., & Moore, I. (2015). Domestic and international student matters: The college experiences of Black males majoring in
areplotted as red +’s. Plots without boxes indicate that all responses besides the median response areoutliers. Recalling the Likert scale currently in use, the 1–4 on the horizontal axis are as follows:agree (1), tend to agree (2), tend to disagree (3), disagree (4).Next, we look for correlations between responses to different survey questions and also to coursegrade. Specifically, we calculated Spearman’s rank-order correlation coefficients r andcorresponding p-values for survey questions 2–10 and for students’ course grade. The nullhypothesis is that there is no monotonic association between the data (course grade and surveyquestion responses). The results are shown in Table 4. Responses for only a few questionsshowed moderate correlations, which
. http://www.ieagreements.org/assets/Uploads/Documents/History/25YearsWashingtonAcc ord-A5booklet-FINAL.pdf (accessed Apr. 16, 2018).[4] C. E. Harris, M. Davis, M. S. Pritchard, and M. J. Rabins, “Engineering Ethics: What? Why? How? And When?,” J. Eng. Educ., vol. 85, no. 2, pp. 93–96, 1996, doi: 10.1002/j.2168-9830.1996.tb00216.x.[5] J. L. Hess and G. Fore, “A Systematic Literature Review of US Engineering Ethics Interventions,” Sci. Eng. Ethics, vol. 24, no. 2, pp. 551–583, 2018, doi: 10.1007/s11948- 017-9910-6.[6] C. E. Harris, “The good engineer: Giving virtue its due in engineering ethics,” Sci. Eng. Ethics, vol. 14, no. 2, pp. 153–164, 2008, doi: 10.1007/s11948-008-9068-3.[7] L. M. Steele et al., “How
. Ralston, University of Louisville Dr. Patricia A. S. Ralston is Professor and Chair of the Department of Engineering Fundamentals at the University of Louisville. She received her B.S., MEng, and PhD degrees in chemical engineering from the University of Louisville. Dr. Ralston teaches undergraduate engineering mathematics and is currently involved in educational research on the effective use of technology in engineering education, the incorpo- ration of critical thinking in undergraduate engineering education, and retention of engineering students. She leads a research group whose goal is to foster active interdisciplinary research which investigates learning and motivation and whose findings will inform the
) critically evaluating the state of research andrecommending improvements, and (c) identifying neglected topics that require the attention ofresearchers. Our completed systematic review will contribute in each of these three areas.Bibliography1. Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A Page 26.1754.10 meta-analytic survey. Journal of Educational Psychology, 106, 901-918.2. Sabo, K. E., Atkinson, R. K., Barrus, A. L., Joseph, S. S., & Perez, R. S. (2013). Searching for the two sigma advantage: Evaluating algebra intelligent tutors. Computers in
underrepresented minorities in engineering. Nonetheless, a story is not completeuntil it integrates not only some of the characters, but also their environment, history, beliefs,values, ways of knowing, doing and being. Similarly, as part of the engineering educationcommunity, we must add more factors to this story – the stories of struggle, subjugation, andoppression.Bibliography 1. Blaisdell, S. (2006). Factors in the Underrepresentation of Women in Science and Engineering: A Review of the Literature. Women in Engineering ProActive Network. 2. Cohen, C. C. D., & Deterding, N. (2009). Widening the net: National estimates of gender disparities in engineering. Journal of Engineering Education, 98(3), 211-226. 3. Beddoes, K