components are used to augment the courses in order to enhance students’mastery of the subject matter and its applications. Usually, the capstone design course at thesenior level allows students to synthesize what they learned and exercise their creative ability.The main goal is to facilitate an environment for students to walk through the entire designprocess from the formulation of ideas, through implementation, test and validation. There aremany reasons that might contribute to the difficulty faced by the students in their ability tosynthesize and be creative. Two specific contributing reasons that we identified and attemptedto address are (1) insufficient critical thinking exercises and (2) lack of self-motivated activitiesunlike the cook-book
were also working to complete their capstone designprojects, and many of them were traveling for interviews. However, the advantage of catchingthem at this position in the departmental study plan is that the students were also more aware ofthe potential benefit of the course on their career, and the concept of adding this course project totheir resume was very attractive. In spite of catching the students at the end of their collegeexperience, the classroom demographics were favorable. When making decisions on the applicability of any set of techniques or approaches toteaching a course, several factors must be balanced. The position of the course within thedepartmental curriculum could affect the course load and the ability of the
external training organization 9. Review of creativity and innovation in the engineering design process Introduction of final projects. 10. Requirements and constraints of final project. 11. Brainstorming for final project. 12. Building models of final project. 13. Refining models of final project. Presentation of draft model to peers and peer review of models. 14. Refining models of final project. Presentation of draft model to peers and peer review of models. 15. Submission of final project and presentation of final projects to peers. Page 26.748.9 Wednesday Thursday
Paper ID #12965Maker: Twisted Sister RoverDr. Andy Zhang, New York City College of Technology Dr. Andy S. Zhang received his PH.D. from the City University of New York in 1995. He is currently the program director of a Mechatronics Project in the New York City College of Technology/CUNY. For the past 10 years, Dr. Zhang has been working on bringing mechatronics technology to the undergraduate en- gineering technology curricula and on helping high school students to learn mechatronics through FIRST Robotic Competition events.angran xiao, New York City College of Technology, City University of New York Angran Xiao is
are Challenge-Based Learning, Educational Innovation in Engineering, Interdisciplinary STEM Education, and Women in STEM. She is an adjoint member of the SOI – STEM Socially Oriented Interdisciplinary STEM Education Research Group at the Institute for the Future of Education.Maria Ileana Ruiz-Cantisani, Tecnologico de Monterrey Maria Ileana Ruiz-Cantisani has a PhD in Educational Innovation and Master of Science in Engineering with specialization in Systems and Quality, and Industrial Engineer. She is Associate Professor at the School of Engineering and Sciences, and professor in Capstone Courses on industrial engineering. She leads projects in the areas of educational innovation , virtual reality and student
Engineering and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and serves on the college’s Capstone Design Committee. Much of his research involves design education pedagogy, including for- mative assessment of client-student interactions, modeling sources of engineering design constraints, and applying the entrepreneurial mindset to first-year programming projects through student engagement in educational software development. Estell earned his BS in Computer Science and Engineering degree from The University of Toledo and both his MS and PhD degrees in computer science from the University of Illinois at Urbana-Champaign.Dr. Stephany
gain widespread traction [55], [56]. A four-year engineering design educationcurriculum is still not widely adopted in engineering colleges in the United States and is oftenlimited to an introductory first-year engineering class and a fourth-year capstone project [57].In 1969, Simon published the work Science of the Artificial extending the cognitive andpsychological aspect of creative design thinking, central to the work of Arnold, and thesystematic design thinking of Archer, to AI [58]. Simon’s work further developed the science ofdesign in cybernetics and AI, positing it as distinct from the natural sciences and as a designtheory for engineering. His contributions are pivotal in the development of design theoryresearch, fostering
the College Industry Council on Material Handling Education (CICMHE). She is an Associate Editor of the Engineering Ap- plications of Artificial Intelligence (Elsevier). She has been a principal investigator in several sponsored projects from National Science Foundation (NSF) and VentureWell.Dr. Abdullah Konak, Pennsylvania State University, Berks Campus Dr. Abdullah Konak is a Distinguished Professor of Information Sciences and Technology at the Penn- sylvania State University, Berks. Dr. Konak also teaches graduate courses in the Master of Science in Cybersecurity Analytics and Operations program at the College of Information Sciences and Technology, Penn State World Campus. Dr. Konak’s primary research interest
Col- leges; ”Building Learning Communities to Improve Student Achievement: Albany City School District” , and ”Educational Leadership Program Enhancement Project at Syracuse University” Teacher Leadership Quality Program. She is also the PI on both ”Syracuse City School District Title II B Mathematics and Science Partnership: Science Project and Mathematics MSP Grant initiatives.Dr. Ali Reza Osareh, North Carlina A&T State University Ali Osareh received his PhD from Virginia tech in 1994. He has worked in the industry including wireless design before joining the Department of Electrical and Computer Engineering at North Carolina Agricul- tural and Technical State University in 2000. He is specializing in Energy
Communication Studies at James Madison University and has published research using qualitative interviewing, ethnographic and rhetorical methods to examine communication in diverse contexts ranging from aging families to university campus cultures. She has advised undergraduate and graduate students in ethnographic and qualitative interview projects on a wide-range of topics, has taught research methods at the introductory, advanced, and graduate levels, and has trained research assistants in diverse forms of data collection and analysis. c American Society for Engineering Education, 2017 Negotiating Tensions of Independence and Connection in Makerspace Cultures: A Qualitative
, service andcommunity based learning, internships, and capstone projects, to name a few. These practices aresaid to be “high impact” because they facilitate engagement and improve retention in college.Whereas research on the efficacy of HIPs in promoting retention and degree attainment incollege is extensive, few have studied the value of these practices in promoting long-term, post-graduation outcomes, such as professional retention.7 Thus, the purpose of this study was toinvestigate the relationship between participation in several high impact educational practiceswhile in college and engineering students’ professional trajectories after graduation in thespecific context of the engineering industry, an industry that suffers considerable
journals, storyboards, and traditional assessments, in situ videorecordings captured decisions and evolution of projects differently. To further investigate thepotential of ongoing interactions as spaces for demonstrating engineering thinking and ideas, aframework was created to analyze in situ video clips. An epistemic frame [2-6] was developedto capture skills, knowledge, identity, values, and epistemologies of engineering relative to K-12formal and informal spaces. First, this paper will describe the development of an engineeringepistemic frame for K-12 students and its synthesis using literature, local contexts, and nationalpolicy directives and its application to one pilot set of data as a case study. The context of thecase study was final
biomedical engineering design course,comprised of junior and senior biomedical engineers. The students underwent a 3-day prototypingworkshop to develop a low-fidelity upper extremity prosthetic hand with the ability to grip, grasp orarticulate using a five-digit design or prehensor hook [9. 10]. The device needed to be controlled by a body-powered harness to open/close the device using movement by the contralateral side tethered with a cable.Senior Biomedical Engineering Capstone (BME 437) – Medical Device: In this 3-hour workshop,students had to develop a limited functional prototype of their capstone design project. Senior biomedicalengineering students spent 10 weeks researching and developing engineering design ideas following theFDA’s waterfall
, Cost/Risk tech risk, safety, uncertainty, whistleblowing, NA 8 NA / 89 Lg, R1 elective, So- environmental protection, organizational Grad, Ind3 Cv25 ethics, IP / discussion, videos, current CS25 events, case studies, reflection Sci-Elect Public, Elective, FY to energy, climate change, NA 35e NA / 40 Lg, R1 Grad, mainly sustainability/lecture, discussion, group non-STEM projects, discussion of contemporary controversy from multiple perspectives SrDsn-Env Public, Capstone Dsn
] D. K. Sobek and V. K. Jain, “Two instruments for assessing design outcomes of capstone projects,” in Proceeding of the 2004 American Society for Engineering Education Annual Conference and Exposition, 2004, pp. 1–13.[47] C. J. Atman, O. Eris, J. McDonnell, M. E. Cardella, and J. L. Borgford-Parnell, “Engineering Design Education,” in Cambridge Handbook of Engineering Education Research, A. Johri and B. M. Olds, Eds. Cambridge: Cambridge University Press, 2014, pp. 201–226.[48] A. Godwin, “The development of a measure of engineering identity,” in ASEE Annual Conference & Exposition, 2016.[49] A. Godwin and W. Lee, “A Cross-sectional Study of Engineering Identity During Undergraduate
Paper ID #40330Board 140: Work in Progress: Exploring Innovation Self-Efficacy inNeurodiverse Engineering StudentsDr. Azadeh Bolhari P.E., University of Colorado Boulder Dr. Bolhari is a professor of environmental engineering in the Department of Civil, Environmental and Ar- chitectural Engineering (CEAE) at the University of Colorado Boulder. Her teaching focuses on fate and transport of contaminants, capstone design and aqueous chemistry. Dr. Bolhari is passionate about broad- ening participation in engineering through community-based participatory action research. Her research interests explore the boundaries of
around in a circle to answer the question. If you don’t want to answer a question, feel freeto pass. The audio is being recorded for transcription purposes but will not be shared publicly. Ifyou’re more comfortable chiming in via chat, go for it, nod your head, add thumbs up.Guiding Questions: 1. What is your program (major, minor concentration), and why did you choose it? [Round Robin] 2. What makes a good learning experience for you? 3. What are some strategies you use to balance coursework and life? 4. For those of you who've completed a capstone project and/or a research paper, can you talk a little bit about the preparation you received that was most helpful and what you wish you knew before you started
Dr. Beyerlein has taught at the University of Idaho for the last 34 years. He is a former department chair and collaborates the college of engineering introduction to engineering course, the inter-disciplinary capstone design course, and the FE review course. Dr. Beyerlein has been active in research projects involving engine testing, engine heat release modeling, design of curricula for active learning, design pedagogy, and assessment of professional skills.Mr. JJ Petersen, University of Idaho American c Society for Engineering Education, 2021 Transforming Introductory Engineering Courses to Match GenZ Learning
was an Associate Professor at the University of Georgia, where she was co-director of the interdisciplinary engineering education research Collaborative Lounge for Un- derstanding Society and Technology through Educational Research (CLUSTER). In her research, she is interested in understanding how engineering students develop their professional identity, the role of emo- tion in student learning, and synergistic learning. A recent research project uncovers the narratives of exemplary engineering faculty who have successfully transitioned to student-centered teaching strategies. She co-designed the environmental engineering synthesis and design studios and the design spine for the mechanical engineering program at
diverse needs of society globally.DEI Statements in Senior Design Projects:The requirement for DEI statements in senior design projects at UIC's Chemical EngineeringDepartment is a significant educational innovation. These statements require students to considerand articulate the societal, cultural, and ethical implications of their engineering solutions. Byintegrating DEI considerations into the capstone projects, students are encouraged to thinkcritically about the broader impact of their work, fostering a mindset that values diversity andinclusivity. This integration ensures that students are not only capable engineers but alsoconscientious contributors to society who understand the importance of their work in variouscultural and societal
capstone designcourses starting in 2016. No other concern, weakness or deficiency was raised about thedepartment ABET assessment in the 2015 ABET review. When the 2021 ABET reviewoccurred, a weakness was assigned for our program in Criterion 4: continuous improvement.The weakness was attributable to (a) faculty not assessing all elements of certain studentoutcomes (SOs), (b) inconsistency in which aspect of SOs were assessed by different instructorsteaching two different sections of the same course, and (c) faculty averaging their assessmentscores in an ad-hoc manner. ABET determined that the department assessment results did notrepresent a systematic assessment process that was applied in a consistent manner throughout theprogram.The new
working in a marketing research firm. Practicumexperiences also allow students to design and develop a project in which they applyknowledge and develop skills such as a doctoral student preparing the components of anonline course. Service Learning Experiences are distinguished by being mutually beneficial for bothstudent and community. Service learning is growing rapidly and is considered a part ofexperiential education by its very nature of learning, performing a job within the community,and serious reflection by the student. Service learning involves solving some of society'sissues; such as, homelessness, poverty, lack of quality education, pollution, etc. One of thegoals of service learning is to help students become aware of these issues
betweenintention, participation, and skills (e.g., leadership, creative thinking)11–16 or investigate theimpact of entrepreneurship education on student outcomes (e.g., retention)17–19. However, withnotable exceptions20,21, these studies do not consider students’ socio-demographic characteristicsto evaluate or assess programs. Much can be gained by considering socio-demographic characteristics, as numerousempirical studies in higher education show that these characteristics, such as gender, race, andpre-college academic preparation affect students’ college experience22. A notable exception isDuval-Couetil et al’s. (2012)20 multi-institutional study of engineering capstone courses. Duval-Couetil et al. (2012)20 found that while engineering major
Research, 1979) and the development of more recentethical norms, this research project has been reviewed and processed by the author’s institutionalreview board (IRB). The author’s plan for this research is to utilize a mixed methods surveyapproach. Survey research has a long history in the realm of human subject research and has arelatively mature methodology associated with it (see, e.g., Sapsford, 2007). Mixed methods research involves both qualitative and quantitative data collection andanalysis (Creswell & Plano Clark, 2018). The use of quantitative data analysis in engineeringwork is long and uncontroversial given engineering’s historical commitment to philosophicalprinciples of post-positivism. More noteworthy is the use of
published 16 papers in peer-reviewed journals, 28 papers in peer-reviewed conference proceedings, and given 12 technical presentations on various topics including: additive manufacturing, mechatronics, biomechan- ics, and engineering education. He currently teaches the Engineered Systems In Society, Mechanical Engineering Professional Practice, and Capstone Design I and II courses.Dr. Priya T Goeser, Georgia Southern University Dr. Priya T. Goeser is a Professor in the Department of Mechanical Engineering, Georgia Southern University - Armstrong Campus in Savannah. She received her Ph.D. in Mechanical Engineering from the University of Delaware. Her current research interests ©American Society
6REFERENCES[1] D. H Schunk, and Frank Pajares. "The development of academic self-efficacy." In Development of achievement motivation, pp. 15-31. Academic Press, 2002.[2] K. Alfano,(2018, June), “A Case Study of Community College Transfer and Success in a 2+2 Program,” 2018 ASEE Annual Conference & Exposition, Salt Lake City, Utah. [Online] Available: ASEE Publications, https://peer.asee.org/29979. [Accessed December 17th, 2020].[3] D. Perez, & J.Gibson, and R. M. Lynch, “Utilizing A Capstone Project As A Catalyst For Reengineering, Recruitment And Retention,” 2006 Annual Conference & Exposition, Chicago, Illinois, June 2006. [Online]. Available: ASEE Publications. https://peer.asee.org
industries. During his 16 years as a Senior Researcher at General Motors’ Global Research and Development Center, Mr. Donndelinger served as Principal Investigator on 18 industry-university collaborative projects focusing primarily on conducting interdisciplinary design feasibility assessments across the engineering, market- ing, finance and manufacturing domains. Prior to this, he held positions in New Product Development at Ford Motor Company and Onsrud Cutter. He currently serves as lead instructor for the Baylor En- gineering Capstone Design program and teaches additional courses in the areas of Engineering Design, Technology Entrepreneurship, and Professional Development. Mr. Donndelinger has published three book
skills in their schooling and future positions. Engineering Education Conference (EDUCON), 2016, pp. 757-760. [15] Zheng, G., Zhang, C., & Li, L. “Practicing and evaluating soft skills in IT capstone projects”, In Proceedings of the 16th Annual Conference on Information Technology Education September, 2015, ACKNOWLEDGMENT ,pp. 109-113.The authors would like to acknowledge the students that [16] Fisher, D. R., & Bagiati, A
thesis project. In addition, senior-level engineering students were required to complete ateam-oriented, design focused capstone project as well as an individual based, research focusedproject in order to graduate. Both of which were evaluated by the departmental staff. The scope,rigor, and quality of such projects appeared to be similar to those found in the U.S., which wasencouraging. However, the lack of staff with academic credentials made this problematic as thenumber of available project supervisors was so limited to adequately mentor approximately 20master level and 30 undergraduate students within the department. As a consequence, the authorspent considerable time during the year assisting students in formulating appropriate
, dispositions, and worldviews. His dissertation focuses on conceptualizations, the importance of, and methods to teach empathy to engineering students. He is currently the Education Di- rector for Engineers for a Sustainable World, an assistant editor for Engineering Studies, and a member of the ASEE Committee on Sustainability, Subcommittee on Formal Education.Ms. Sarah Aileen Brownell, Rochester Institute of Technology Sarah Brownell is a Lecturer in Design Development and Manufacturing for the Kate Gleason College of Engineering at the Rochester Institute of Technology. She works extensively with students in the mul- tidisciplinary engineering capstone design course and other project based elective courses, incorporating