an exemplar artifact from our Instagram dataset.In the artifact shown in Figure 2, the text invited NSBE chapter community members [chaptername redacted] to come together for a study session, to prepare for final exams. The NSBEmembers were engineering students, studying a STEM curriculum at the undergraduate andgraduate school level. The text alone was a single dimension of the invitation: “Helloooooeveryone Finals are coming up fast so come study with NSBE today from 11-5pm in [locationredacted]!! There will be free (pizza) We hope to see you all there!”. The paralinguisticelements augmented the invitation, adding a variety of sentiments. The emoji were a WavingHand with Medium-Dark Skin Tone; three consecutive Exclamation Marks; six
decreased during the semester because they had a group discussion about theimportance of diversity in teams. Working in diverse teams also increased the teamworkskills of students. However, there were some significant negative changes in the opinions ofstudents about including diversity in an engineering curriculum or teaching diversity byuniversity professors. Also, students did not have the motivation to combat racial bias whereit existed in teams.Fila and Purzer [24] investigated whether gender diversity adds the number of creativesolutions in design team projects. They found that gender-balanced teams did not have morecreativity for developing design proposals comparing to all-male teams. But, gender-balancedteams that found more possible
CooperativeEducation and Internships.[23] Dehing, Fons, Wim Jochems and Liesbeth Baartman, 2012, “Development of an Engineering Identityin the Engineering Curriculum in Dutch Higher Education: An Exploratory Study from the Teaching Staffperspective,” European Journal of Engineering Education, 38 (1), pp. 1-10.[24] Pfund C, Maidl Pribbenow C, Branchaw J, Miller Laufer S, Handelsman J., Professional skills: themerits of training mentors, Science. 2006; 311:473–4.[25] Bieschke K., Research self-efficacy beliefs and research outcome expectations: implications fordeveloping scientifically minded psychologists, J Career Assess. 2006; 14:77–91.[26] Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior(Vol. 4, pp. 71-81). New
Director of the Center for 3-D Visualization and Virtual Reality Applications, and Technical Director of the NASA funded MIST Space Vehicle Mission Planning Laboratory at the University of Maryland Eastern Shore. In 2010, he joined Eastern Michigan University as an Associate Dean in the College of Technology and currently is a Professor in the School of Engineer- ing Technology. He has an extensive experience in curriculum and laboratory design and development. Dr. Eydgahi has served as a member of the Board of Directors for Tau Alpha Pi, as a member of Advi- sory and Editorial boards for many International Journals in Engineering and Technology, as a member of review panel for NASA and Department of Education, as a
Paper ID #15646Sustainability-Infused CurriulumMs. Diana Lynne Ibarra, ISF Academy Shuyuan Science and SustainabilityPrograms Manager. BS degrees in Chemistry and Chemical Engineer- ing MS degrees in Management and Environmental Engineering c American Society for Engineering Education, 2016 Sustainability Infused Curriculum (WIP)AbstractA recently established school-wide sustainability policy in 2015, explicitly states, “an experimentally integrated,environmentally and ethically sustainable system of science education and conservation practices based on the 2012 JejuDeclaration of the
a thriving program within a month. The project team aimed to replicate as many of the residential program features as possible. EPIC is more than lectures and engineering labs. An example of the virtual program schedule can be seen in Appendix II.B. Project selection and core curriculum development In early June 2020, a small team of California Polytechnic State University faculty and EPIC staff collaborated to create a new set of laboratory activities for the online EPIC summer program experience. To develop a virtual lab curriculum, there were several objectives to meet and challenges to overcome. The primary objectives were to provide a project or series of projects introducing participants to engineering over the course of
as these relate to developing clinical methods to facilitate more effective and cost-efficient motor practice. She is especially interested in integrating the use of technology into rehabilitation for neurologically impaired populations. Her work includes using various commercial video gaming technologies to improve upper extremity function as well as balance. She is also investigating the use of harness systems in balance training and moving this training out of the lab and into a community garden.Dr. Debbie K. Jackson, Cleveland State University Dr. Debbie K. Jackson is an Associate Professor in the College of Education and Human Services at Cleveland State University. Dr. Jackson taught chemistry, physics, and
Paper ID #15922Fundamental Research: Developing a Rubric to Assess Children’s Drawingsof an Engineer at WorkDr. Julie Thomas, University of Nebraska - Lincoln Julie Thomas is a Research Professor of science education in the College of Education and Human Sci- ences at the University of Nebraska-Lincoln. Thomas’ research has focused on children’s science learning and teacher professional development. Proud accomplishments include collaborative efforts – such as No Duck Left Behind, a partnership with waterfowl biologists to promote wetland education efforts, and En- gineering is Everywhere (E2), a partnership with a
Paper ID #37739An Exploration of How Students Make Use of Hands-on Models to LearnStatics ConceptsDr. Kathryn Mary Rupe, Western Washington University Kathryn Rupe is an assistant professor of math education at Western Washington University. Previously, she taught middle school math and worked as an instructional coach in Chicago Public Schools for 10 years.Prof. Eric Davishahl, Whatcom Community College Eric Davishahl serves as professor and engineering program coordinator at Whatcom Community College in northwest Washington state. His teaching and research interests include developing, implementing and assessing active
design. c American Society for Engineering Education, 2020 Paper ID #31208Prof. Didem Ozevin P.E., University of Illinois at Chicago Dr. Ozevin is an associate professor of the Department of Civil and Materials Engineering. Dr. Ozevin received her Ph.D. from Lehigh University in 2005. She worked as a research scientist at Physical Acous- tics Corporation till 2010. Her research is integrating structural design and damage assessment methods, and real time process and damage detection.Prof. Jeremiah T Abiade, University of Illinois at Chicago Mechanical and Industrial Engineering Laboratory for Oxide
Paper ID #38979The Inclusive Glossary: An Embedded, Interactive Approach to Accessibleand Inclusive LearningJiaxi Li, University of Illinois Urbana-Champaign Jiaxi Li is a 5-year BS-MS in Computer Science student at University of Illinois at Urbana Champaign, advised by Professor Lawrence Angrave and Professor Klara Nahrstedt. He has research interests in the intersection of Machine Learning and Systems. He has previous experience in video analytics and text mining.Mr. Colin P. Lualdi, University of Illinois, Urbana-ChampaignYijun Lin, University of Illinois, Urbana-Champaign Yijun Lin is a Master in Computer Science
Paper ID #27554Fostering Belonging through an Undergraduate Summer Internship: A Com-munity of Practice Model for Engineering Research EducationMs. Nicole Bowers, Arizona State UniversityDr. Michelle Jordan , Arizona State University Michelle Jordan is as associate professor in the Mary Lou Fulton Teachers College at Arizona State Uni- versity. She also serves as the Education Director for the QESST Engineering Research Center. Michelle’s program of research focuses on social interactions in collaborative learning contexts. She is particularly interested in how students navigate communication challenges as they negotiate
scalesrepresenting academic challenge (higher order learning, reflective and integrative learning,learning strategies, and quantitative reasoning) and two scales representing experiences withfaculty (student-faculty interactions and effective teaching practices). The subscales associatedwith the latter set of indicators (experiences with faculty) are similar to faculty support andstudent-faculty interaction scales used in other research efforts. In contrast, the four subscalesassociated with academic challenge reflect what students actually do in their academic endeavorsby measuring time on task associated with the various skills that students use and develop duringtheir college experience [15].Studies which focus on the emotional aspects of engagement are
theories weredeveloped independently, they have been integrated to get better understanding of the “self”(Stets and Burke, 2000).Self-determination theory (SDT) derives from social psychology, and it relates to the motivationbehind people’s choices in the absence of external influences. Its roots are in comparing intrinsicand extrinsic motives and the understanding of the dominant role that intrinsic motivation playsin individual behavior. Intrinsic motivation refers to doing an activity for the inherent satisfactionor enjoyment it brings to an individual, and not because of external pressures or rewards such assatisfaction, self-esteem, competence, and pro-social behavior (Ryan & Deci, 2000). In contrast,extrinsic motivation refers to doing
school board was impressed. ‘Oh, that foundation in New York thinks we should do something different, so let’s do it.’… They listened to us because we were from the outside… The Sloan Foundation had leverage.”Pierre did go on to stress, however, that the reputation and leverage needed to be coupled withsound planning: “It’s not just the name [of the foundation]. You had to design the school with theright curriculum. You had to place it…within an existing high school that had a principal whoreally supported it and solved every problem they had.”DiscussionThe engineering education pioneers described many different ways in which they helpedfacilitate others’ success. We next examine their accounts in terms of Lave and Wenger’s threedimensions
Paper ID #14448Design, Build, and Installation of an Automated Bike Rental System as a Partof Capstone DesignDr. Scott F. Kiefer, York College of Pennsylvania Scott Kiefer has spent the past fifteen years teaching mechanical engineering at four institutions. As an exemplary teaching specialist in mechanical engineering at Michigan State University, Scott received the Withrow Award for Teaching Excellence, given to one faculty member in the College in Engineering for outstanding instructional performance. Scott specializes in machine design, vibrations and controls, and mechatronics. He started his career at the University
[39], forming a mature and knowledgeable supportive network to foster an inclusive,diverse, and equitable workspace [40].2. Nurturing student-initiated interest groups (SIGs)Since the center commenced operations in 2020, it has been hosting the Student-Initiated InterestGroup (SIG) program [41], which aims to onboard project teams that are both student-initiatedand student-led to the center. This initiative integrates the project team into the center'sframework, enabling them to leverage its resources for technology exploration and development.Figure 4 illustrates the growth in the number of SIGs, with 24 established SIGs in the center as of2022/23. Figure 5 showcases the diversity of student interests within the SIGs in 2022/23,highlighting
found in a traditional high schoolprogram, specialized courses that include an introduction to research method and twoTechnology and Engineering courses, and a University- or industry-based research mentorshipthat starts in the summer of the 10th grade and culminates in a senior capstone project. TheIntroduction to Research method class is designed to provide students with a vital, year long,full-emersion experience into the processes and activities involved with scientific andengineering research and practices. The Technology and Engineering courses, in 10th and 11thgrades, introduce students to the technology tools and their applications in science andengineering practices through modern, hands-on experiments. These courses integrate a
federally funded projects. Dr. Sydlik’s interests are in supporting efforts to improve the educational experiences and outcomes of undergraduate and graduate STEM students. She is or has been the lead external evaluator for a number of STEM and NSF-funded projects, including an ERC education project, an NSF TUES III, a WIDER project, an NSF EEC project through WGBH Boston, two NSF RET projects, an S-STEM project, a CPATH project, and a CCLI Phase II project. She also currently serves as the internal evaluator for WMU’s Howard Hughes Medical project, and has contributed to other current and completed evaluations of NSF-funded projects.Dr. Allison Godwin, Purdue University at West Lafayette Allison Godwin, Ph.D. is
Paper ID #15009Using an e-Learning Environment to Create a Baseline of Understanding ofDigital Logic KnowledgeDr. Carolyn Plumb, Montana State University Carolyn Plumb is the Director of Educational Innovation and Strategic Projects in the College of En- gineering at Montana State University (MSU). Plumb has been involved in engineering education and program evaluation for over 25 years. At MSU, she works on various curriculum and instruction projects including instructional development for faculty and graduate students. She also serves as the college’s assessment and evaluation expert.Dr. Brock J. LaMeres, Montana State
University of Illinois at Urbana ChampaignIntroductionThe potential for interdisciplinary approaches to education in efforts to inspire learners has beenshown to be fruitful in K12 and college level curricula1-7. A movement combining Art & Designwith STEM has promoted the benefits of STEAM8. In addition to the improved performance ofstudents who are engaged in this type of curriculum, there are opportunities to develop projectsthat embody the interdisciplinarity of these practices9. Workshops held in 2014 and 2015successfully promoted engagement and collaboration, and inspired learners who attended tobuild their own touch synthesizer. By emphasizing the aesthetics and musicality of the end result,the promotion of the event aimed to broaden K12
changes. In a recent effort to re-establish arelationship between the Engineering department and University Library, the library adopted auser centered approach to build connections and establish relationships. Contrary to an “if webuild it, they will come” approach, this strategy prioritized a series of interviews and focusgroups with students, staff, and faculty within the division. This listening first approach hashelped us prioritize library resources in response to demonstrated curricula, research, andscholarship needs, many of which have changed over the past three years. This case studyexamines student focus groups and interviews. Major takeaways include new knowledge ofstudent research practices, detailed insights from minoritized
School of Engineering at Grand Valley State Uni- versity. He received his BSE and MSE degrees in Aerospace Engineering at Embry-Riddle Aeronautical University and his Ph.D. in Mechanical Engineering at the University of Cincinnati. His research inter- ests are in the thermo-fluids area and also focuses on promoting graduate education among undergraduate students via research collaborations. American c Society for Engineering Education, 2021 The Effectiveness of Dimples on a NACA Airfoil: A Numerical Investigation Conducted via an Independent StudyAbstractThis paper integrates research and education in an effort to enhance the critical thinking
Newark Public Schools. Her latest endeavors have introduced an increase in the number and quality of STEM-related opportunities with the Orange Public Schools as the Director of Mathematics and Science; expanding opportunities to underrep- resented populations of students to participate in STEM-focused offerings such as Robotics, engineering courses, and high-impact summer camps. In an effort to further ready students for college success through new models for learning, Dr. Powell, in collaboration with district leads, post-secondary partners, and industry experts founded by the STEM Innovation Academy of the Oranges. The Academy is a fully integrated STEM education model that uses engineering design, mathematical
Paper ID #18987Development and Implementation of an Introduction to Research Winter In-ternship Program for Underrepresented Community College StudentsProf. Nicholas Patrick Langhoff, Skyline College Nicholas Langhoff is an associate professor of engineering and computer science at Skyline College in San Bruno, California. He is also a co-investigator for multiple grant projects at Ca˜nada College in Redwood City, California. He received his M.S. degree from San Francisco State University in embedded electri- cal engineering and computer systems. His educational research interests include technology-enhanced instruction
Paper ID #13650A Hybrid Approach to a Flipped Classroom for an Introductory CircuitsCourse for all Engineering MajorsDr. Steven G Northrup, Western New England University Dr. Steven G. Northrup, an Associate Professor of Electrical and Computer Engineering at Western New England University, earned a BSEE from the University of Michigan, Ann Arbor, and an MSEE & Ph.D. from Vanderbilt University. Before attending Vanderbilt University, he worked in the defense industry in Whites Sands, NM and in the automotive electronics industry designing climate control systems for Ford Motor Company. At Western New England University
framework provides an understanding ofhow environmental flows contribute to degraded water quality 25, 26, 27. Each step of the process from establishing measurement points, to data collection,hydrologic analysis, and modeling allow students to conduct hypothesis-testing experiments.Students delve deeply into the components of the process and work as a team to integrate theirknowledge into solving broad stormwater management problems.III. Students and teachers activities The educational activities of this program consist of participation in the StormwaterManagement Research Team (SMART) Institute (www.umaine.edu/smart) in June of each yearand structured activities in the following academic year, as explained in the following sections.A
thoseunderrepresented in STEM, succeed and persist in STEM coursework and programs[5-8]. An ELErequires administrators, teachers, counselors, community members, and parents to workcollaboratively to understand the foundational practices required to improve all students’outcomes[9]. Understanding of the importance of diverse and culturally relevant learningenvironments in engineering education is growing[10]. However, the field lacks effective PD(Professional Development) models and curriculum for developing and sustaining ELEs in ruralsettings to improve students’ pursuit of postsecondary engineering programs. Rural schools oftenlack access to engineering professionals or rigorous high-quality engineering education[11]. Webelieve that needs to change.This
throughout the curriculum (a design project in fluids, one in heat transfer, one inreactor design, etc.). The 2-or-3-course series has an average of 6.1 credit hours compared to the4.7 credit hours for a single capstone design course. The capstone design experience is 4.8 hourson average if there are design courses throughout the curriculum but 5.7 hours if there are onlydesign projects sprinkled through the curriculum. The survey question did not distinguishbetween semester and quarter credit hours, but 93% of the responding institutions are on thesemester system.Either the capstone design series or single course may be offered once per year or multiple terms.At 78% of the institutions, the capstone design course or courses are offered only once
swath of students. We do not develop an argument for the benefits of entrepreneurship education becausethat has been done so well by previous scholars. For more information about the benefits andvarious definitions of entrepreneurship education, we refer you to studies by Putro et al., (2022);Boldureanu et al. (2020); Gianiodis and Meek (2020); Ahmed et al. (2020); and Brune and Lutz(2020). The paper now turns to the main goals and curriculum practices of entrepreneurshipeducation at the high school level.entrepreneurship education in high school Many scholars have argued for the benefits of entrepreneurship education for highschools students, particularly when the entrepreneurship program is connected to STEMeducation as well as