and build projects in traditionally analytical courses in the Engineering Mechanics sequence. c American Society for Engineering Education, 2016 Using Stress Shielding in Hip Implants as a Case Study to Teach Loading of Composite BeamsAbstractA laboratory activity was developed in which the students modeled and analyzed the femoralportion of an artificial hip replacement as a composite beam. A historical challenge with artificialhip replacements has been that the stiffer artificial femoral component shields the surroundingbone from stresses during physiological activities. This phenomenon, known as “stressshielding,” results in bone resorption that can lead to implant failure
Paper ID #17321Supporting STEM Transfer StudentsDr. Jennifer Marie Duis, Northern Arizona University Augsburg College, Chemistry, B.S., 1999 University of Colorado—Boulder, Organic Chemistry, M.S., 2002 University of Northern Colorado, Chemical Education, Ph.D., 2008 University of British Columbia, Chemistry Teaching Laboratory Optimization with CWSEI, Postdoctoral Fellow, 2008—2011 Assistant Professor, Department of Chemistry & Biochemistry, University of Northern Arizona, Flagstaff, AZ, August 2011—PresentDr. Nena E. Bloom, Center for Science Teaching and Learning, Northern Arizona University University of Michigan
environment suggesting thatnontraditional students may find active learning more disruptive. This preliminary study suggeststhat using classroom response systems (clickers) in the 1st year curriculum with large class sizesmay lead students to feel that the class was disruptive and that active learning was not as positiveof an experience as active learning environments later in the curriculum.Introduction The President’s Council of Advisors on Science and Technology recommends increasingthe number of STEM students by 34% annually using classroom approaches engaging studentsactively and replacing standard laboratory courses with discovery-based courses1. The number ofSTEM students in higher education is expected to rise over the next decade
, process development and product development. - See more at: https://www.asee.org/public/person#sthash.WaxuWfqL.dpufDr. Michael Langerman, South Dakota School of Mines and Technology Dr. Michael Langerman is professor and Head of the Mechanical Engineering Department and Co- Director of the Computational Mechanics Laboratory at the South Dakota School of Mines and Tech- nology (SDSM&T). Before academia, Dr. Langerman was employed at the Idaho National Engineering Laboratory either as a member of the technical staff or as a closely aligned consultant. He has conducted applied research for LANL, ORNL, and several universities and companies. He has over 80 technical publications and conference presentations. He was
, mechanics of materials, calculus, and kinematics and dynamic. She has also developed undergraduate fluids laboratories and supervised many capstone projects. Her interest in SoTL is evidence-based teaching strategies, student engagement, faculty development, and teaching and learning communities. Dr. Yan is a registered P.Eng. with APEGBC and has served as reviewer for various international journals. c American Society for Engineering Education, 2016 Online homework assignments: instructor’s perspective and students’ responsesIntroductionWith the continuous development of technologies, creating online homework assignmentsbecomes possible. For large classes, online
recordedthroughout each semester were also considered. These grades were given by a group of peermentors responsible for helping to administer laboratory activities and grading logbooks. Somementors participated in the role for multiple semesters and were thus more experienced atassigning logbook grades, but there was additionally some turn-over each semester. Each of thethree or four mid-semester gradings focused both on quality of work (e.g., appropriate content,content clarity, and organization) and on general logbook proficiency (e.g., regular entries,quantity of documentation, and adequate reflection), and to a lesser degree on contentcorrectness. Since the logbook grades were performed by peers rather than experiencedengineering professors, lesser
. He received his Ph.D. in industrial engineering in 1996 from the University of Illinois at Urbana-Champaign, where, as a graduate student, he taught quality and applied statistics and researched machining models for monitoring and control. At Cal Poly, Dr. Waldorf has taught and developed courses in manufacturing process design, computer-aided manufacturing, tool en- gineering, quality engineering, and reliability. He has participated in numerous activities related to the improvement of teaching methods, teaching assessment, and curriculum design. He is currently the fac- ulty advisor for Society of Manufacturing Engineers (SME). His research interests are in metal cutting process modeling, tool wear, cutting tool
themes, real world examples, and new topics such as sustainability. The rationalefor implementing the cases within a traditional laboratory was to determine if the cases impactedstudent engagement; helped students to see the link between laboratory exercises and real worldapplications; increased student’s critical thinking levels above the lower levels of Bloom’sTaxonomy of knowledge and comprehension for their experimental data; and improved thequality of student laboratory reports. The new cases developed addressed: 1) E-waste to teachenvironmental ethics and statistical analysis of data, 2) the 2014 Duke Coal Ash Spill inDanville, VA to teach physical and chemical water quality and treatment; 3) a Confined AnimalFeeding Operations water
. Cognitive research and the design of science instruction. Educational Psychologist, 17, 31-53.5. Mayer, R.E. 2003. The Promise of Multimedia Learning: Using the Same Instructional Design Methods across Different Media. Learning and Instruction, 13, 125-139.6. Scalise, K., M. Timms, A. Moorjani, L. Clark, K. Holtermann, and P.S. Irvin. 2011. Student Learning in Science Simulations: Design Features That Promote Learning Gains. Journal of Research in Science Teaching, 48(9), 1050-1078.7. Mayer, R.E. and R. Moreno. 2002. Aids to Computer-Based Multimedia Learning. Learning and Instruction, 12, 107-119.8. Gunstone, R.F. and A.B. Champagne. 1990. Promoting Conceptual Change in the Laboratory. In The Student
Paper ID #15868Toward a Comprehensive Online Transfer Engineering Curriculum: Assess-ing the Effectiveness of an Online Engineering Circuits Laboratory CourseMr. Thomas Rebold, Monterey Peninsula College Tom Rebold has chaired the Engineering department at Monterey Peninsula College since 2004. He holds a bachelor’s and master’s degree in electrical engineering from MIT, and has been teaching online engineering classes since attending the Summer Engineering Teaching Institute at Ca˜nada College in 2012.Dr. Amelito G Enriquez, Canada College Amelito Enriquez is a professor of Engineering and Mathematics at Ca˜nada College in
forces incomparison to the perpendicular specimens. The force applied to the perpendicular specimenswas only resisted by relatively weak van der Waals interactions acting between neighboringpolymer chains, as opposed to the strong covalent bonds within the backbones of the chains.Two methods of activity implementationThis activity was designed by the course instructor (K. A. Erk) and implemented by 1 graduatestudent teaching assistant (TA; J. J. Nash) during a 2-hour laboratory activity with sophomorestudents in materials engineering at Purdue University (44 students total). To determine the mosteffective instructional method, the students were divided into two groups – Group A and B,summarized in Table 2 on the following page.Table 2: Summary
Evaluation and the Evaluation of Active Learning Laboratory and Lecture Curricula' American Journalof Physics 66 (338), 1998.[7] L.C. McDermott, P.S. Shaffer, and M.D. Somers, 'Research as a guide for teaching introductory mechanics: Anillustration in the context of the Atwood’s machine', American Journal of Physics 62 (46), 1994.[8] R.R. Hake, 'Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics testdata for introductory physics courses', American Journal of Physics, 66 (64), 1998.[9] J. Bernhard, 'Teaching engineering mechanics courses using active engagement methods' Physics Teaching inEngineering Education, 2000.[10] P.C. Boylan-Ashraf, S.A. Freeman, M.C. Shelley, 'A Case for a Reform in Teaching
adjunct professor for Bioengineering at the University of Pittsburgh, and an automation consultant for Crossroads Consulting, LLC. Brian’s consulting, teaching and research focus areas include hardware and GUI software integration primarily using LabVIEW by National Instruments and kinematic and kinetic data collection and analysis methods for human body movement characterization especially as related to normal and perturbed (slipping) gait. Dr. Moyer earned a BS in mechanical engineering from Carnegie Mellon in 1993, a MS in mechanical engineering from the University of Pittsburgh in 1996, and a PhD in Bioengineering from the University of Pittsburgh in 2006. Brian teaches courses in computer programming for engineers
over thirty years of teaching experience at different universities such as Northeastern, Suffolk and Tufts. He has been teaching as a professor in the department of mechanical engineering at Wentworth Institute of Technology for the last twenty years. Dr. Olia has taught variety of courses such as Statics, Dynamics, Mechanics of Material, Vibrations and System Dynamics. Professor Olia has pub- lished more than eighteen technical papers in the areas of stress concentration in the hybrid composites, adhesively bonded composite joints with gaps subjected to bending, biomechanics and dynamic response of adhesively bonded joints. Professor Olia has appeared in a WBZ-TV Channel 4 news interview as an expert on MBTA crash
Paper ID #17376Experience and Reflection on an Industry-College Partnership to Develop aNew Instrumentation and Measurement Laboratory CourseDr. Bob Brennan, University of Calgary Robert W. Brennan has been actively involved in a wide range of national and international design ed- ucation initiatives over the past 12 years. He has served on the Canadian Design Engineering Network (CDEN) steering committee, chaired the organizing committee for the second CDEN conference (2004), chaired the Schulich School of Engineering’s first Engineering Education Summit (2007), served as an or- ganizing committee member for the CIRP
particular, physical models are incredibly usefulfor teaching system modeling and system identification. These courses make an excellentcandidate for low-cost laboratory experiences, as commercially available systems fromeducational suppliers can cost on the order of ten thousand dollars. This motivates anycontributions to the literature in the development of relatively inexpensive laboratory systems forupper level dynamics and mechanics courses.The low-cost laboratory experience developed in this paper is a two-degree of freedom spring-cart system, with a particular application to system identification. The physical system wasdeveloped by modifying an inexpensive set of educational equipment to create a spring-cartsystem. The actual lab experience
University Dr. Sundaram is a Professor in the Electrical and Computer Engineering Department at Gannon Univer- sity. His areas of research include computational architectures for signal and image processing as well as novel methods to improve engineering education pedagogy. c American Society for Engineering Education, 2016 Teaching of Design of Experiment to the First Year Electrical Engineering StudentsAbstract: In the traditional Electrical Engineering curriculum, courses are introduced and taughtprogressively from the most fundamental subjects, such as circuit theory, for example, to moreadvanced subjects such as power electronics and electric drives. To complement the teaching ofconcepts, laboratory
earned his Ph.D. in Electrical and Computer En- gineering from the University of Illinois at Urbana-Champaign as a Mavis Future Faculty Fellow and conducted postdoctoral research with Ruth Streveler in the School of Engineering Education at Purdue University. His research interests include creating systems for sustainable improvement in engineering education, promoting intrinsic motivation in the classroom, conceptual change and development in engi- neering students, and change in faculty beliefs about teaching and learning. He serves as the webmaster for the ASEE Educational Research and Methods Division. c American Society for Engineering Education, 2016 Scaling-up project-based
Paper ID #15549Adding Meaningful Context to Robotics Programs (Work in Progress)Dr. Michele Miller, Michigan Technological University Dr. Michele Miller is a Professor of Mechanical Engineering at Michigan Technological University. She teaches classes on manufacturing and does research in engineering education with particular interest in hands-on ability, lifelong learning, and project-based learning.Dr. Nina Mahmoudian, Michigan Technological University Dr. Nina Mahmoudian is an assistant professor in the Mechanical Engineering-Engineering Mechanics Department at Michigan Technological University. She is the founding
learning research in the STEM academic discipline of engineering education, specifically targeting the development of better teaching methods for engaging students in the applications of electromagnetic theory. This research has been culminated in the development of a laboratory component for the undergraduate engineering electromag- netics course at Penn State. The laboratory activities were designed to give students as many chances as possible to gain hands-on experience with real-life tools, measurement devices and analysis techniques.Dr. Julio Urbina, The Pennsylvania State University - University Park JULIO V. URBINA, Ph.D is an Associate Professor in the School of Electrical Engineering and Com- puter Science at
Paper ID #14477Diffusion of Mobile, Hands-on Teaching and Learning in Puerto Rico: FirstYear ResultsDr. Juan C Morales, Universidad del Turabo Dr. Juan C. Morales, P.E., joined the Mechanical Engineering Department at Universidad del Turabo (UT), Gurabo, Puerto Rico, in 1995 and currently holds the rank of professor. Dr. Morales was the ABET Coordinator of the School of Engineering for the initial ABET-EAC accreditation of all four accredited programs at UT. He has been Department Head of Mechanical Engineering since 2003. His efforts to diffuse innovative teaching and learning practices derive directly from the outcomes
teachingmanufacturing systems courses, they have been used successfully for teaching a closely relatedsubject, Robotics and Automation7. Those using this approach have found that the main benefitof such labs is that they allow students to visualize and experiment with the theories learned inclass. However, as students work on virtual remote laboratory projects through computerinterfaces, the sole use of this approach has been reported to lead to feelings of isolation and todecreases in student motivation7.It is apparent that if the challenges of development and maintenance costs can be overcome, theuse of physical manufacturing systems laboratories can be an effective approach for teachingmanufacturing systems courses1,5-7. Labs based on physical systems allow
) members of the faculty who teach academic courses in the center. Thecenter hosts a number of credit-awarding courses each year, spanning all four years of theundergraduate programs. The course content is aligned with the computer science, biomedicalengineering, electrical engineering, environmental engineering, and mechanical engineeringdisciplines. Figure 1. Yale Center for Engineering Innovation and Design CenterStudents in these courses benefit from being taught within the Yale Design Center by having allaspects of the lectures, laboratory activities, design activities and shop training located in a singlelocation. With the entirety of the courses taught in one location, ready access to Yale DesignCenter resources, including tools
Paper ID #15269WORK IN PROGRESS: Teaching Broadly-Applicable STEM Skills to HighSchool Sophomores Using Linux and SmartphonesProf. Daniel Brian Limbrick, North Carolina A&T State University Dr. Daniel Limbrick is an assistant professor in the Electrical and Computer Engineering Department at North Carolina Agricultural and Technical State University (NC A&T). As director of the Automated Design for Emerging Process Technologies (ADEPT) laboratory at NC A&T, he researches ways to make computers more reliable (i.e., radiation hardening) and scalable (e.g., three-dimensional integra- tion) through novel approaches
departments?ContextThis study is a preliminary analysis of the teaching and learning expectations and practiceswithin three engineering units involved in an institution-based change initiative. The changeinitiative leadership has set out to accomplish several goals within and across the seven STEMunits. The first goal of the change initiative is to promote evidence-based instructional practicesin large-enrollment STEM undergraduate courses. The specific practices promoted by the changeinitiative leadership are interactive engagement with frequent formative feedback in lecturesettings, and Cooperative Learning in laboratory settings.1,10 Second, the change initiativeleadership promotes these practices through the development of Communities of Practice
attitudes in students are developed using structuredlectures, laboratory session, and projects. For most of the students, it is very difficult to see theconnection between topics covered in the lectures or in the course. Thus, there is an urgent needfor focusing student attention towards the fundamental or core ideas related to the topic underdiscussion as take away points. We implement a teaching approach with “thought bubbles”,commonly used in arts and cartoons, to present core ideas to students as discussion questions.“Thought bubbles” (aka clouds) are used to pose as introductory questions for initiatinglecture/discussion and as concluding thoughts. This approach helps student to be attentive and tograsp what will be covered during the session
. Weitzen, Jay; Webster, Erin; and Alan Rux. "University of Massachusetts Lowell “Laboratory in a Box” For First Year ECE Students." Proceedings American Society of Engineering Education, 2013.6. “User guide and specification NI myRIO-1900.” http://www.ni.com/pdf/manuals/376047a.pdf7. Mosteo, A.R.; Tardioli, D.; Montijano, E., "The LEGO Pardo Experience: Motivational Control Demonstrations for Cadets [Focus on Education]," in IEEE Transactions on Control Systems, vol.34, no.6, pp.78-126, Dec. 2014.8. Alisa Gilmore, P. E. "Design Elements of a Mobile Robotics Course Based on Student Feedback." American Society of Engineering Education, 2015.9. Liu, Cheng Chih. "Teaching Digital Designs by Building Small Autonomous Robotic Vehicles Using an
Paper ID #15548Comparison of Traditional, Flipped, and Hybrid Teaching Methods in anElectrical Engineering Circuit Analysis CourseDr. Faisal Kaleem, Metropolitan State University al Kaleem received his Ph.D. degree in Electrical Engineering from Florida International University (FIU), Miami, FL. Since 1998 he has been serving as an educator in different institutions. Currently, he is serving as an Associate Professor in the department of Information and Computer Sciences at Metropolitan State University as well as a Senior Fellow at the Technological Leadership Institute (TLI) at University of Minnesota. Dr. Kaleem is
Paper ID #15461Learning From the ”Big Box Store” - An Alternative Strategy for TeachingStructural SystemsDr. Stan Guidera, Bowling Green State University Stan Guidera is an architect and a Professor in the Department of Architecture and Environmental Design at Bowling Green State University. He teaches design studios and computer modeling courses related to digital applications in design, design visualization, and computer animation. He has conducted work- shops, published, and presented papers at national and international conferences on a variety of digital design topics including design visualization, building
thataccomplishes little. The originality of his concept made it popular among the society and twoPurdue engineering fraternities began a contest as a rivalry in the 1940s and 1950s, which laterwas revived in 1983 and became a nationwide Rube Goldberg Machine (RGM) contest in 19883.The contest was expanded to the high school level in 1996 with the support of the USDepartment of Energy’s Argonne National Laboratory. In 2012, an international online RGMcontest was launched by Rube Goldberg Inc. for ages 11-144.RGMs were also used in educational studies, especially those related with design. Several ofthese studies utilized Rube Goldberg projects in K-12 education and freshmen level engineeringcourses such as teaching engineering design to K-12 students