, several ofour middle years major-required courses, and a new third-year course designed for students whoexpect to graduate within the next year [29]. The first-year course introduces students toprinciples of reflection as a building block of SDL, in addition to design thinking, and thebiomedical engineering (BME) field. In the middle years’ courses, students engage in signaturelearning experiences that foster their entrepreneurial mindset and encourage them to integratewhat they are learning with some of their prior extra- and co-curricular experiences. In their thirdyear, students complete a new, major-required course entitled The Art of Telling Your Story thatacts as a type of capstone experience in this vertically integrated curriculum.The
institutional budget allotments to those departments.Figure 1. Customization of the Comm Lab structure to suit each institution’s needs, internalorganization, and funding mechanisms. At MIT, a central Comm Lab administration overseesdiscipline-specific Comm Labs that are embedded within each participating department in theSchool of Engineering. Each departmental Comm Lab has its own assigned manager. TheBrandeis Comm Lab is a centralized resource that serves all seven departments within theDivision of Science, with one director overseeing all operations. At Rose-Hulman, the CommLab is currently embedded within the school’s makerspace, and may in the future be expanded toserve all undergraduates in a senior capstone
, blogs, wikis, etc.).Our department offers Master of Science degree programs in both Engineering Management andManagement Science. Each program of study consists of 36 semester hours and includes aculminating capstone experience. The Probability & Statistics for Engineers course, in additionto being a core requirement for each degree program, serves as either a pre- or co-requisite formany other courses in our program. Additionally, the course fulfills a math or technical electivefor other majors in the School of Engineering. Currently, The Probability & Statistics forEngineers course is offered three times per year (fall, spring, and summer) in a traditionalclassroom setting. Fall and spring terms consist of 16-week semesters while the
. Christopher M Weyant, Drexel University Dr. Weyant has been an Associate Teaching Professor in the Department of Materials Science and Engi- neering at Drexel University since 2011. Prior to this position, he was an Assistant Professor of Materials Science and Engineering at Stony Brook University. He earned his doctorate from Northwestern Uni- versity, master’s from the University of Virginia and his bachelor’s from Pennsylvania State University. In addition to his experience in academia, Dr. Weyant has worked at Honeywell Aerospace, Capstone Turbine Corporation and Sandia National Laboratories.Dr. Robert L. Nagel, James Madison University Dr. Robert Nagel is an Assistant Professor in the Department of Engineering at
(2007) to an engineering problem frame of reference and the physical posed to them (the Midwest location codes, with kappa values of .748 Floods problem). and .746 respectively.”Kong, Douglas, In the “qualitative study of “The kappa values were found to be 100%Rodgers, Diefes- student team projects,” the for the definition category, 93% for theDux, & research team used constant evaluation category, and 84% for theMadhavan (2017) comparative analysis to comparison category.” analyze student work products, specifically their
].Survey Design and MethodologyThis research project was reviewed and determined to be exempt by our college’s InstitutionalReview Board (IRB). Our experimental setup consisted of two groups of students at a largeMidwestern R1 University, in an undergraduate, pre-capstone SE course. We utilized a quasi-experimental pretest-posttest hybrid between groups and within groups design for this study. Thecontrol and treatment groups consisted of successive cohorts of sophomores/juniors from CS andComputer Engineering, one section each. This SE course was a mandatory component of theiracademic progression towards earning their degree.The treatment group was taught using PI while the control group received instruction throughtraditional lectures. The
, Construction, and Environmental Engineering department at Iowa State University.Mr. TRAVIS HOSTENG, Iowa State University of Science and Technology Travis Hosteng is a faculty member in the Department of Civil, Construction, and Environmental Engineering at Iowa State University. His areas of expertise are bridges, timber design and structural engineering. He has been teaching multiple courses ranging from the foundational engineering mechanics course to Senior level capstone design-build course.Prof. Sriram Sundararajan, Iowa State University of Science and Technology Sriram Sundararajan is a Professor of Mechanical Engineering and serves as the Associate Dean for Academic Affairs in the College of Engineering at Iowa
benefits from integrating UDL and inclusive design principles.Inclusive design projects, like creating assistive tools for individuals with disabilities, fosterempathy, innovation, and real-world problem-solving skills among students [2, 7]. Such projectsresonate particularly with underrepresented groups, including SWDs, who are motivated by thesocietal impact of their work. Capstone courses, for example, effectively incorporate UDL toencourage students to consider diverse user needs in their designs [2].Despite these advancements, SWDs report significant barriers, including difficulties navigatingmultiple LMS platforms, inconsistent use of accessible tools, and limited instructor awareness.Surveys reveal that centralized platforms, captioned
findings. Assessment Instrument Overview As described in the Introduction, we chose to use these 3 constructs (of 6 available from the Intercultural Knowledge and Competence VALUE Rubric) to evaluate participant intercultural awareness gained through M&M programming: Cultural SelfAwareness (knowledge), Openness (skills) and Empathy (attitude). Our research team chose this instrument because of the theoretical alignment with our research objectives. Theoretical perspectives in which this instrument is grounded were also described in the Introduction. Regarding criteria for assessing at each level of this rubric, one moves progressively from Benchmark (1) to Milestones (2, 3) and then to Capstone (4
Paper ID #37969Toy Adaptation in a Laboratory Course: An Examination of LaboratoryInterests and Career MotivationsDr. Alyssa Catherine Taylor, University of California, San Diego Dr. Alyssa Taylor is an Associate Teaching Professor in the Shu Chien-Gene Lay Department of Bioengi- neering at the University of California San Diego. Dr. Taylor has twelve years of experience teaching across bioengineering laboratory, introductory, and capstone design classes. Through work such as toy adaptation described in this paper, Dr. Taylor seeks to prepare students to engage in Universal Design and consider accessibility in their
York. Dr. Barry holds a Bachelor of Science degree from Rochester Institute of Tech- nology, a Master of Science degree from University of Colorado at Boulder, and a PhD from Purdue University. Prior to pursuing a career in academics, Dr. Barry spent 10-years as a senior geotechnical engineer and project manager on projects throughout the United States. He is a licensed professional en- gineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a significant number of journal articles and
expressly devoted to the first-year Engineering Program at Northeastern University. Recently, she has joined the expanding Department of Mechanical and Industrial Engineering at NU to continue teaching Simulation, Facilities Planning, and Human-Machine Systems. She also serves as a Technical Advisor for Senior Capstone Design and graduate-level Challenge Projects in Northeastern’s Gordon Engineering Leadership Program. Dr. Jaeger has been the recipient of numerous awards in engineering education for both teaching and mentoring and has been involved in several engineering educational research initiatives through ASEE and beyond.Dr. Courtney Pfluger, Northeastern University Dr. Courtney Pfluger received her Doctoral degree
schools, are responding to theseserious issues with training, task forces, student groups, counseling services, and concertedattempts to shift the culture towards openness and accountability [30]. Further, there areprograms that actually center social justice, community engagement, and humility regardingprivilege and power are growing. Some examples include the Colorado School of Mines, MercerUniversity, Oregon State University, and Villanova University [31]–[34]. These not onlydemonstrate care for people and the environment impacted by engineering projects, but alsoencourages students to care for each other.An Ethic of Care may provide a framework through which engineering faculty and staff atuniversities can improve their cultures to be more
assessments that promote problem solving skills rather than promoting memorization. The second is about how and why values-based learning outcomes should be scaffolded into STEM curricula and capstone experiences. Dr. Vale believes that building student and faculty appreciation of the intersections between social justice and engineering is crucial to empowering engineers to fulfil their mandate to serve the public. She brings this view to the classroom, to curriculum design and development, and to her research.D’andre Jermaine Wilson-Ihejirika P.Eng., University of Toronto D’Andre Wilson-Ihejirika is currently a PhD candidate at the University of Toronto within the Institute for Studies in Transdisciplinary Engineering
role in the classroom, helping them to create better coursesand a more supportive atmosphere for students. “In design projects, developing projects, in course development and course activities, in assessment, etc.” “Most profs were excellent students, so we need to imagine the struggles faced by the more average students. Also, we tend to act like our course is the only or most important course the students are taking, so we need to adjust our expectations of what the students can realistically accomplish in a semester full of other demands.”No negative themes, or themes reflecting the belief that empathy has no value or role
will contribute to a large project,where the full texts of the chosen abstracts will be review and analyzed.MethodsThis scoping review was guided using the Arksey and O’Malley Five-Stage Framework forStructured and Systematic Scoping Reviews. Stage one of the framework requires identifying aresearch question, which went through a series of iterations. Initially, the research question “Howdo engineering programs integrate Justice, Equity, Diversity, and Inclusion (JEDI) frameworksinto their curriculum to meet the needs of the diverse populations they serve?”, was posed to geta general understanding of the place that JEDI frameworks have in engineering programs. Afterfurther consideration of the question, it was decided that it needed a better
). Page 26.871.6Data CollectionStudents agreed to participate in a one-hour data collection session, with 30 minutes devoted toeach participant’s concept. Each participant was asked to bring a previously defined concept forthe project they were engaged in within their course, and all students had been previouslyrequired to complete some form of user or market research to inform their project. The entireexercise was audio and video recorded (Figure 2), and all sketches and notes the participantsgenerated were retained and scanned for further analysis.The empathic walkthrough method was conducted twice for each dyad, with each participant’sconcept serving as an encapsulated use of the method, approximately 30 minutes in duration.Dyad A was used as
transdisciplinary focus on love as a foundational element in student learning, paired with theuse of a Holistic Design Thinking (HDT) methodology rooted in love, has been applied acrossvarious educational levels. These include eight senior-level, year-long secondary courses, sevensingle-semester undergraduate courses, and four graduate-level courses. Additional applicationsincluded junior high courses, capstone projects, and independent studies. Elements of pedagogyand methodology continue to evolve and have been extended into postsecondarytransdisciplinary honors courses.At the secondary level, students from several different public schools met for half-day sessions atan off-campus location throughout the entire fourth year of high school. The
engineers, students will be comforted to know they can achieve success inengineering and be prepared for the issues they will face in the field. By including social contextfor engineering design, the next generation of engineers will create socially conscious designs andfight for equity in their future careers. This inclusion of social context should be in the forms ofcase studies, debates, or role play, capstone projects rather than just historical examples, whichwill teach students how to critically think about such issues and consider ways in which largersocial structures serve to empower or disenfranchise people. Furthermore, education shouldinclude inclusivity training to discuss issues of equality and inclusion, including gender equity inthe
diversity education into first year is an obviousimmediately achievable goal, with many programs already incorporating some elements atpresent. Another obvious place to include a deep dive in diversity would be in courses on ethicsand professionalism, or in co-op and capstone experiences. Here lessons about diversity can bereadily applied in workplace contexts, and future employers can readily build on educationaloutcomes in industry training settings. Finally, we must seriously consider how to build diversityeducation into the engineering core courses. One easily implementable way to do this would beto identify and highlight achievers in the field who are members of diverse groups. Studentscould do this as an assignment initially, and profiles
. McNair, Virginia Tech Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Director of the Center for Research in SEAD Education at the Institute for Creativity, Arts, and Technology (ICAT). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, liberatory maker spaces, and a RED grant to increase pathways in ECE for the professional formation of engineers.Dr. Marie C. Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she co-directs the
, &Lee (2006) found that nearly all workplace problems are complex and ill-structured. Studentsoften only encounter complex ill-defined problems at the end of their four year engineeringprogram and enter the workforce without these critical skills requiring more on the job training.3How can we prepare students to solve these ill-defined complex problems that they willencounter as working engineers? The Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH)Engineering Research Center attempted to answer this question in a Biomedical Engineeringcontext. The VaNTH project designed a biotransport engineering curriculum to help studentsdevelop innovation and efficiency.4,5,6 Innovation was operationalized as the adaptive ability toperform well in
Assistant Professor in the Department of Mechanical and Industrial Engineering, and the Troost Institute for Leadership Education in Engineering (ILead). She completed her PhD at the Massachusetts Institute of Technology (MIT) studying product development decision-making during complex industry projects. Dr. Olechowski completed her BSc (Engineering) at Queen’s University and her MS at MIT, both in Mechanical Engineering. Dr. Olechowski and her research group Ready Lab study the processes and tools that teams of engineers use in industry as they design innovative new products. c American Society for Engineering Education, 2020
faculty member at Northern Arizona University.Dr. Kyle Nathan Winfree, Northern Arizona University Dr. Winfree is the Associate Director for Undergraduate Programs in the School of Informatics, Computing, and Cyber Systems as Northern Arizona University. His research focuses on wearable technologies as applied to health assessment and rehabilitation.Dr. Corinna Marie Fleischmann P.E., United States Coast Guard Academy CAPT Corinna Fleischmann is a licensed Professional Engineer with military, academic and research experience in water resources engineering, environmental engineering, coastal resiliency, construction project management and engineering education. CAPT Fleischmann is a career educator who has been a
towardsthe Society 5.0 global vision. Coupled with the use of conscious, ethical Artificial Intelligence tools (ChatGPT, JasperAI, Copilot, Gemini, etc.) and learning modalities (active/experiential/inquiry-driven, flipped-classroom, etc.) willempower students to individualize learning experiences/outcomes. However, e-learning must be supplemented byopen discussions [13], and project-based/textbook-based learning, especially for foundational subjects. Withinchemical engineering, core subjects and topics like calculus, transport phenomena, chemical thermodynamics,separation processes, and plant/process design (undergraduate capstone) must be taught through a mix of pedagogicalstrategies. Our results reveal an increase (especially since 2017
on recurrent data collection and analysis. Drawing from situatedlearning theory’s Communities of Practice (CoP) [5], our project goal is to help students’navigate their undergraduate engineering degree and build a sense of belonging and self-efficacyin engineering by creating an integrated community of post-traditional and military students inengineering. To meet these goals, our study is guided by the following theory- and design-basedresearch questions.Theory 1. In what ways does an onboarding seminar series influence participants’ navigation of their undergraduate engineering program? 2. In what ways does an onboarding seminar series influence participants’ sense of belonging and self-efficacy in engineering?Design 3
components of the engineering curriculum—in engineering sciences, engineering design, and humanities and social science courses; that work resulted in Engineering Justice: Transforming Engineering Education and Practice (Wiley-IEEE Press, 2018). His current research grant project explores how to foster and assess sociotechnical thinking in engineering science and design courses.Dr. Ann D. Christy P.E., The Ohio State University Ann D. Christy, PE, is a professor of Food, Agricultural, and Biological Engineering and a professor of Engineering Education at the Ohio State University (OSU). She earned both her B.S. in agricultural engineering and M.S. in biomedical engineering at OSU, and her Ph.D. in environmental
principle, we cite supporting literature andfindings from our interviews with equity-oriented engineering instructors, and we provideillustrative examples of implementation in a variety of course contexts. We also highlight theinteractions of curriculum and instruction across principles. Before describing our principles of equity-centered engineering curriculum andinstruction, we provide a project overview and description of our development process.Describing our development process involves information on how we identified relevantsupporting literature for the principles and gathered examples of how to enact the principles fromengineering instructors. Following that overview, we present the six principles, including thesupporting literature
University of Colorado Boulder. Her teaching focuses on fate and transport of contaminants, capstone design and aqueous chemistry. Dr. Bolhari is passionate about broad- ening participation in engineering through community-based participatory action research. Her research interests explore the boundaries of engineering and social science to understand evolution of resilience capacity at family and community level to sustainable practices utilizing quantitative and qualitative re- search methods.Dr. Daniel Ivan Castaneda, James Madison University Daniel I. Castaneda is an Assistant Professor in the Department of Engineering at James Madison Univer- sity. Daniel earned his PhD in 2016 and his Master’s in 2010, both in civil