served as program coordinator then promoted to as- sistant director of outreach and diversity at Mays Business School at Texas A&M. She later served as director of recruitment in the College of Geosciences at Texas A&M. In both capacities, she created, managed and developed projects and programs to enhance the presence of underserved underrepresented students in science and in business to enhance their academic experiences. She has received many awards throughout her professional career, including an Outstanding Staff award from the Mays Business School in 2005, the 2008 President’s Award for Academic Advising, the 2011 Latino American Who’s Who for her achievements in advancing the culture of the Latino
this was true, or whether there was rather a difference in emphasized skills. He interviewedseveral CPE French professors. In an interview, the Assistant to the Chemistry and ChemicalEngineering Scientific Direction at IPL stated that she and her faculty “…do not perceive theAmerican students to be at a lower level than the French students.” Other French professors,such as Dr. Peiere Monkham and Dr. Muriel de Montigny, remarked that they believed thesame. They noticed that on the whole, however, the American students did not have the samepractical (i.e. in-lab) experience that French students would have by the same point in theiracademic careers, and that American engineering education tended to be more theoretical. AtCPE in France, hands-on
. Previous research supports science self-efficacy asbeing positively associated with achieving science literacy (Bryan, Glynn, & Kittleson, 2011)and science achievement (Britner & Pajares, 2001). This study examines if exposing students toyoung model “engineering experts” would impact middle schoolers’ science self-efficacy. If so,the motivation for k-12 teachers to invite engineers into their classroom is two fold. It increasesstudents’ awareness of engineering careers as well as increases student’s achievement in science.But would such a short intervention have an impact? Students were surveyed at the beginningand end of a one day event at Washington State University, which included “engineering experts”who interacted with the students in
those from underrepresented groups, not only tocomplete their undergraduate degrees, but also to pursue advanced degrees and/or careers inengineering. The detailed program objectives and expected outcomes can be found in [10].Participants spend a total of 10 weeks in the program. In the first two weeks, the students arehosted at the academic institutions, SFSU or UofSC, receiving training for the upcomingresearch activities. During this two weeks, workshops, including professional developmentworkshops such as Applying for Graduate School, Communication and Writing Skills, TheElevator Pitch, and Entrepreneurship, as well as subject related preparation workshops such asData Acquisition, Dynamics, Introduction to Programming, Introduction to Lab
the Section President of Chico State, and the Region A Collegiate Senator. She has been involved with Society of Women Engineers for almost 4 years, accounting for her entire Undergraduate Collegiate Career. Some of Shelby’s passions include host- ing Outreach Events, such as Imagineer Day, giving back to her community through various volunteering activities, and teaching middle school girls in her A Local Outreach Program alongside Hadil Mustafa. She has won various awards, including the Region A Future Collegiate Leader Award (2017), Region A Outstanding Collegiate Leader Award (2018), and the Chico State Mac Martin Excellence in Leadership Award (2018). She has career aspirations to be in the Automotive/Racing
lure of high salaries from the expansive local industry pulls most of our students away fromgraduate school. The average starting salary for the most recent graduates with a B.S. in chemicalengineering from LSU was ~$76,000 per year. We believe this is one reason less than 3% of ourstudents enroll in graduate programs. This (low level) graduate school enrollment trend is similarfor other regional institutions. In the last decade we have had only moderate success at recruitingengineering, physics, and chemistry undergraduates from these regional schools to enroll in aSTEM Ph.D. program. This REU program exposes students to exciting graduate research andincreases interest in career paths made possible through graduate degrees. This is a benefit
. Does providing spatial skills training improve the retention of low-spatial-ability students, including students traditionally underrepresented in technician programs?Faculty and administrators at four community college partners implemented SKIITS from fall2014 through fall 2017.II. Prior ResearchA. Spatial Visualization Related to STEM FieldsThe ability to visualize objects and situations in one’s mind and to manipulate those images is acognitive skill vital to many career fields, especially those that require work with graphicalimages. Nearly fifty years ago, Smith17 concluded that spatial skills play an important role in 84different careers. A long history of research has highlighted the importance of spatial skills intechnical
Paper ID #21108What Activities and Practices Sustain the Engagement of Highly Diverse Com-munities of Young Engineering Students in an Out-of-School Fellowship Pro-gram?Priya Mohabir, New York Hall of Science Priya Mohabir has been with New York Hall of Science for 18 years, starting as an Explainer - a floor facilitator - and working her to up to lead NYSCI’s youth development initiatives. Priya’s experience as an Explainer shaped her outlook on the countless possibilities of making STEM education exciting for children as she was climbing NYSCI’s Science Career Ladder With this experience as a foundation, Priya has
, Dearborn c American Society for Engineering Education, 2018 S-STEM Scholarship Program in Manufacturing: First Three Years’ Experience at the University of Michigan-DearbornIntroductionThe NSF-awarded STEM scholarship program in the College of Engineering and ComputerScience at the University of Michigan-Dearborn was started in September 2015, and now it is inits third year of its existence. The title of our NSF proposal is “S-STEM Program inManufacturing Engineering Leadership Development”. The key objectives of this program areto provide tuition scholarship, academic support, mentoring and career guidance to academicallytalented, financially needy undergraduate students who will join the university as
consultant at the Arab Institute for Statistics, a position that enabled him to lecture in a number Arab countries. Sabah has over 25 years of experience in higher education including more than 15 years in education management across different parts of the world. Concentration in the last 15 years was on development of career, Art & Science, technology and engineering programs. Leading positions in educational institutions including chair of department, acting Dean, university board member, Director and Chair of University assessment committee , Engineering Faculty Council, consul- tant and team leader. A unique experience in coordination between educational institution and industrial partners to build new
focusing on research on the Dynamics and Control of UAVs, Collision Detection &Avoidance System for UAVs, Machine Learning, Artificial Intelligence, Computer Vision, andFlight Test experiences. Another goal is to attract students from community colleges to STEMprograms at 4-year institutions and encourage the participants to pursue their studies for graduatedegrees.This paper discusses the assessment of the Program after the second year of the Program. The REUsite has been successful in meeting its goals and objectives. Most of the participants are nowpursuing their educational or professional career in the area of UAVs and other related areas. TheProgram has also been successful in motivating the participants to graduate degrees in STEMfields
of K-16 engineering learners; and teaching engineering.Dr. Glenda D. Young Collins, Mississippi State University Dr. Glenda D. Young Collins completed her doctoral work at Virginia Tech in the Department of Engi- neering Education. Her research interests include the role of university-industry partnerships in shaping student career expectations and pathways, the student to workforce continuum, and broadening participa- tion in engineering. Dr. Collins has worked as an Employer Relations Assistant for the VT Career and c American Society for Engineering Education, 2019 Paper ID #27724 Professional
courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?,” and is a Co-PI on the NSF Revolutionizing Engineering Departments grant ”Additive Innovation: An Educational Ecosystem of Making and Risk Taking.” He was named one of ASEE PRISM’s ”20 Faculty Under 40” in 2014, and received a Presidential Early
cumulative GPA’s that average .24 higher than theirpeers who do not use the space. CenterPOINT users’ term GPA’s are .27 higher on average(Table 2). Both results are statistically significant at a .01 significance level.Table 2: CenterPOINT Visitors’ Grade Point Averages Cumulative GPA Term GPACenterPOINT Users 3.06 2.93CenterPOINT Nonusers 2.82 2.66Career Exploration Industry PartnershipsMany students are motivated by their long-term career goals, but may not have an awareness ofthe full breadth of career possibilities, or may not have realistic expectations about the workingworld in their chosen field. By partnering with industry, the STEP grant has been able to
published in several congresses and he has organized more than 30 congresses around the world. c American Society for Engineering Education, 2016 Engineering Adventure for Young GenerationsAbstractThe Education Research Team of COPEC – Science and Education Research Council -has designed and implemented the K12 School Adventure Plan for a city, with the goal ofproviding better and effective knowledge for young students, especially those who willnot enter a University. The main goal is to help encourage more bright young minds topursue careers in engineering or technology, by providing K12 students, from publicschools of the city, knowledge about sciences and research methodology in a way that itwill
expectations may result in more instability than most haveexperienced in their young lives. Students who do not swiftly recognize their deficiencies andadapt to more effective habits and tools may perform poorly in their classes, leading to low firstsemester GPAs. This in turn may cause them to question their career choice and doubt theirability to successfully complete the engineering program. Such negative self-belief could resultin a low retention rate for the College of Engineering. To help address these problems, the on-line Boot Camp program is designed to help students improve perseverance, math readiness, andspatial visualization. It also helps them adjust to campus life, set realistic academic expectations,choose or confirm their choice of
Technological University. Additionally, he has six years of industrial experience as a Senior Engineer and 18 years of academic experience as a professor, Associate Professor, and Assistant Professor. Foroudastan’s academic experience includes teaching at Tennessee Technological University and Middle Tennessee State University in the areas of civil engineering, me- chanical engineering, and engineering technology. He has actively advised undergraduate and graduate students, alumni, and minority students in academics and career guidance. Foroudastan has also served as Faculty Advisor for SAE, Mechanical Engineering Technology, Pre-engineering, ASME, Experimental Vehicles Program (EVP), and Tau Alpha Pi Honors Society. In
Paper ID #11870Measuring Community College Students’ Self-Efficacy toward Circuit Anal-ysisDr. Carl Whitesel, Mesa Community College Carl Whitesel has spent his career teaching Engineering Technology, and has taught in the community college setting since 2007. He is currently teaching Robotics and Automated Systems within the Arizona Advanced Manufacturing Institute at Mesa Community College. His teaching focus is primarily on circuit analysis, electronics, motors and sensors. He earned his Ph.D. in Engineering Education - Curriculum and Instruction, from Arizona State University in 2014. His primary research interests are
professional careers. Integrated Project Delivery (IPD) is theemerging project delivery method of the time and is often accompanied by the use of BuildingInformation Modeling (BIM). Construction management programs across the nation haveadapted to the changing industry needs and trends by incorporating IPD and BIM into existingcourses or creating new courses. Although educating students about the differences between IPDand other more traditional project delivery methods is seemingly straightforward, teaching thecollaborative skills needed for IPD is difficult, especially when students lack the discipline-specific expertise upon which IPD relies. These educational challenges make the relationshipbetween industry and academia of utmost importance.This
overarching assessment methodology.In an extensive review of the literature, Seymour and colleagues reviewed published studies andconference proceedings examining the impact of undergraduate research experiences on studentoutcomes 4. Based on their review, they clustered the most commonly indicated benefits tostudents of such programs. These included: increased interest in specific areas of research andstudy among participating students; increased recruitment of underrepresented groups inresearch-based experiences; gains in research and research-based skills; clarification, refinement,and confirmation of educational- and/or career-related goals; increases in the understanding ofthe research process; and increases in both self-confidence of ability
research allows them to learn about recent discoveries and innovations,share about them in the classroom, and thereby encourage and stimulate students to pursueengineering and computer science careers such as industrial automation. The paper will describeprogram activities, research projects, outcomes, and lessons learned from a National ScienceFoundation-sponsored Research Experiences for Teachers program. Participants were recruitedfrom science, technology, engineering and math departments in high schools and collegesthroughout the U.S. Special effort was made to recruit teachers and instructors from districts andtwo-year colleges with large numbers of underrepresented minority students. Program objectiveswere to 1) provide opportunities for
management, architecture, and civilengineering programs (2-year, 4-year, and graduate degrees, 950 in total), only seven percentprovide courses with IRC related learning outcomes. A follow-up national survey toconstruction, architecture and civil engineering faculty suggests the barriers to teach codes arethe lack of available resources and low cognitive student learning perceived in teaching about theIRC. In response to these findings an online course was developed. Students learn how codeswill influence their professional careers, identifying the difference between prescriptive andperformance based codes and communicating how codes relate to the performance of a structure.Student learning outcomes are created through multiple active learning
directlyimpacts the number of students with disabilities that go into STEM careers. Informal learningopportunities, such as summer camp experiences, provide students an opportunity to continue togrow and reinforce their interest in STEM. Previous K-12 summer engineering and sciencecamps designed for the general education population yielded an improvement in student attitudetowards science2. Additionally, data collected from previous camps designed to make scienceand robotics accessible to students with disabilities also demonstrated that these studentsincreased their interest in science3,4. However, while a few science and robotics campsspecifically for students with VIB have emerged in the past 5 years, little data has been publishedon the efficacy of
develop a new instructional model and to transform traditional style inteaching to more student-centered, interactive, team-learning based method for the engineeringtechnology discipline. Therefore, the outcomes of this NSF project brought innovation andchanges, not only in terms of creating an effective instructional model for STEM education, butalso by encouraging students, as future workforces, to participate in various undergraduateresearch projects as they prepared for careers in the field of green manufacturing technology.1-5Instructional ApproachManufacturing has played a critical role in the technological evolution of our society, fromstructural steels to electronics and robotics technology. The GPMT, as a multidisciplinary fieldin
occupational field though,have always been under question and investigation. This paper is an attempt to present efforts,motives and incentives that help Qatari female students to excel in their overall engineeringstudies and career through promoting participation in events, conferences and externalcompetitions.Educating and Inspiring Female EngineersPrimary education and school policies targeting in promoting females’ interest in engineeringfollowed by further innovative university education will assist future Qatari female engineeringstudents to reveal and apply more qualification and abilities. US Department of Education, statedthat during 1990-2005 in the USA there has been a continuous improvement at the high schoolgirls’ average grade point
Paper ID #17058The Impact of Summer Research Experiences on Community College Stu-dents’ Self-EfficacyMs. Lea K Marlor, University of California, Berkeley Lea Marlor is the Education and Outreach Program Manager for the Center for Energy Efficient Electron- ics Science, a NSF-funded Science and Technology Center at the University of California, Berkeley. She manages undergraduate research programs to recruit and retain underrepresented students in science and engineering and also outreach to pre-college students to introduce them to science and engineering career opportunities. Ms. Marlor joined University of California
needed to be successful in Engineering study. As part of this effort, the following tools are highlighted: Winning The First Month; Math Stress Quests; and Semester Project. The above efforts assisted in changing the ‘Foundations of Engineering’ course from a teacher dominated instruction and philosophy course to a more student learning centered, engaging, hands-on, engineering problem solving course that improves student-faculty interaction and student motivation which will better prepare them to have a successful engineering education and career. A survey was conducted to assess the effectiveness of the course redesign.I. Background on Undergraduate Engineering Issues In recent decades engineering schools worldwide are focusing on
the City University of New York. He was a Chancellor’s Fellow (City University of New York) and a NIH Postdoctoral Fellow (Weill Cornell Medical College-Division of Molecular Medicine). As the Project Administrator of the LSAMP, he oversees the day-to-day operation of the NYC Louis Stokes Alliance program across the 18 member campuses of City University of New York. Claude also served as the Co-Director of the Black Studies Program at the City College and the Project Director of the City Col- lege Black Male Leadership and Mentoring Program. The Black Male Leadership and Mentoring Project (BMLMP) at the City College of New York, provides a support system during the critical stages of aca- demic and career
Specialist in Education at the Center for Innovation in Teaching & Learning (CITL) at the University of Illinois. He organizes the central campus teacher training program for the more than 800 new Teaching Assistants (TAs) Illinois welcomes each year. He continues to work with TAs throughout their graduate career by observing their classes, helping them collect and interpret feedback from their students, and shepherding them through CITL’s teaching certificate program. He offers a variety of workshops every year to faculty, staff, TAs, and undergraduates, on topics including course design, running effective discussions, and using humor in the classroom.Dr. Blake Everett Johnson, University of Illinois, Urbana-Champaign
, and into communities to identify issues and develop solutionsthat increase both resilience and sustainability. The need to make 21st century graduate educationtraining requires educators to develop innovative approaches that provide critical professionalskills that transcend discipline and prepare students for a broad range of career choices. In thisstudy, a novel approach was developed for STEM graduate education that aligns professional skilltraining with experiential learning pedagogy adopted from training models in the healthprofessions. The training model designed for a cohort of newly admitted PhD students consists oftwo components, an immersive summer program (Leadership Academy), followed by a fallChallenge Course. The goals of the