faculty mentorship, the pathway into and through graduate education, and gender and race in engineering.Dr. Allison Godwin, Purdue University, West Lafayette Allison Godwin, Ph.D. is an associate professor in the Robert Frederick Smith School of Chemical and Biomolecular Engineering at Cornell University. She is also the Engineering Workforce Development Director for CISTAR, the Center for Innovative and Strategic Transformation of Alkane Resources, a Na- tional Science Foundation Engineering Research Center. Her research focuses on how identity, among other affective factors, influences diverse students to choose engineering and persist in engineering. She also studies how different experiences within the practice and
perspective, we can also usediscourse identity to determine students’ internalization of the discipline’s ethical canons anddisciplinary identity based on how they discursively position themselves in relation to the valuesof the profession. For example, research conducted by Dannels [17] and Douglas and colleagues[43] explored the discursive practices utilized by students throughout a variety of academiccontexts. They found that students did not perceive themselves as engineers; they perceivedthemselves as students working for a grade that would lead them to graduate from an engineeringprogram. In these studies, these students utilized discourse to maintain their student identitiesand separated themselves from engineers. To strengthen the link
lecture.IntroductionThis research paper explores the ways in which engineering postdoctoral scholars describe theappeal of pursuing a career in the professoriate. Scholarship concerning engineering careertrajectories presently lack the depth necessary to understand the arc of the career from student topostdoctoral scholar to professor (Jaeger et al., 2017; St. Clair et al., 2017; Su, 2013). Aninvestigation of this trajectory is critical for those invested in increasing the number ofunderrepresented minorities (URMs; African American, Latinx, and Native American) andwomen entering the professoriate and earning tenure. Researchers have found postdoctoraltraining is crucial for a scholar’s productivity and ability to compete for professorships (Andalibet al., 2018
international students. The analyses for answeringour two research questions were conducted independently in this exploratory study.Study ParticipantsStudy participants were students from a first-year engineering course in the spring semester andmost students were in their first year of study (more than 91%). This data consist 1477 studentsworked on 409 teams. Among the participants 370 were females,1102 were males, and 5students selected other or not prefer to answer. 1166 students were US-citizen and 311 wereinternational. Also, 899 students were White, 338 Asian, 33 Black, 129 Hispanic, 1 NativeAmerican, and 48 “Other.” There were 29 students who declined to answer. We are focused atteam-level effects rather than individual-level experiences, so we
students. In 2018 and 2019, she collaborated with Dr. Kavitha Chandra to utilize participatory action research (PAR) as an evaluation approach for the Research, Academics, and Mentoring Pathways (RAMP) summer program for first-year female engineering students.Prof. Kavitha Chandra, University of Massachusetts, Lowell Kavitha Chandra is the Associate Dean for Undergraduate Programs and Professor of Electrical and Com- puter Engineering in the Francis College of Engineering at the University of Massachusetts Lowell. She directs the Research, Academics and Mentoring Pathways (RAMP) to Success program that aims to estab- lish successful pathways to graduate school and interdisciplinary careers for new undergraduate students
incorporate AI into educational curricula and teaching methods. Additionally, Aggrawal mentors students at various levels and is actively seeking collaborative opportunities in her field. ©American Society for Engineering Education, 2025Assessing and Characterizing Perspective-Taking Abilities in Undergraduate Students: A Case Study ApproachAbstractThis Empirical Research Paper (Full Paper, 10 pages) investigates the development ofperspective-taking abilities in undergraduate students utilizing a case study approach.Background: The increasing emphasis on preparing graduates for a globalized workforcenecessitates the development of intercultural communication skills. Perspective-taking is key
external to internal ability to define theself assists in the social and professional development of students.25Context of CourseProgram and Course DescriptionThe University of Michigan’s Multidisciplinary Design Program was established in 2007. Asseen in Conger et al., students were excited to begin their engineering programs at the university,but there was a disconnect from what they learned in their courses to their professional practiceafter graduation.26 MDP is but one piece of the university’s commitment to prepare engineersfor the 21st century and beyond. Recognizing the need for cooperation and collaboration amongdifferent disciplines in the design process, a common experience for all engineers, MDP, wascreated to allow students and teams
Paper ID #37108Where Are We, and Where to Next? ’Neurodiversity’ in EngineeringEducation ResearchTheo Sorg, Purdue University Theo Sorg (they/them) is a third-year PhD student and National Science Foundation Graduate Research Fellow in the School of Engineering Education at Purdue University. They received their Bachelor’s de- gree in Aeronautical and Astronautical Engineering at Purdue University. As an undergraduate, they also received a Cooperative Education Program certificate for their work as a Pathways Intern at NASA’s John- son Space Center. Their research interests focus on challenging problematic conceptions and
enhance analytical abilities and promote problem-solving skills usingmultiple levels of abstraction [15]. Institutes define the CT according to unique goals and standards, meaning no unifiedCT definitions exist among researchers. For example, the International Society for Technologyin Education (ISTE) defines CT as a systematic approach for solving problems in computersciences and other subject areas and careers [16]. According to the K–12 Computer ScienceFramework, CT is closely related to computer sciences, specifically the capabilities ofcomputers for solving various problems using algorithms. The framework includes corepractices for promoting the computing culture, collaborating using computing, definingcomputational problems
teaching approachesand students’ experiences. Lattuca and her colleagues’ [12] research on the culture and values ofengineering disciplines demonstrated that disciplinary contexts shape faculty members’ attitudesand behaviors. Recent research explores the idea of the culture of engineering education and theneed to understand this culture before we can effect systemic change [13, 14]. For example,Godfrey [15] showed that different engineering disciplines exhibited different cultures, or“cultures within cultures,” affecting the participation of women.Our project explores the different disciplinary cultures of EE, CpE, and ME as these fieldsprovide a sharply contrasting picture of engineering matriculation, persistence, and attrition forBlack
participating in studies on technologies for disability, overlookingtheir much-needed insight, and treating them as unequal engineering partners in the design andresearch processes [2]. Another literature survey focused on ASEE publications noted that therewas a significant lack of research focusing on disability as an identity and on the experiences ofstudents with disabilities in engineering education [3].Several works have explored the stigma, social exclusion, systemic marginalization, devaluation,and feelings of “otherness” experienced by students with disabilities in engineering education[4], [5]. These consequences were attributed to a variety of reasons, including the lack of rolemodels with disabilities, educators’ misconceptions about the
multi-cultural and multi-disciplinary settingthat provides the basis for robust and sustainable solutions. In this proceeding, we present ourobservations, challenges, and learnings garnered over eight years of hosting the summer schooland detail the current program design, which has evolved to reflect lessons learned.1. The ProgramThe US-Denmark research and education program, funded for the first three years by the DanishAgency for Science, Technology and Innovation and the following five years by US-NSF PIRE,is a cooperative and collaborative partnership between two US universities: Universities ofCalifornia, Santa Cruz and Davis (UCSC, UC Davis), and two Danish universities: AalborgUniversity (AAU) and the Technical University of Denmark
, personality, and assessment. He is director of the Individual and Team Performance Lab and the Virtual Team Performance, Innovation, and Collaboration Lab at the University of Calgary, which was built through a $500K Canada Foundation for Innovation Infrastructure Grant. He also holds operating grants of over $300K to conduct leading-edge research on virtual team effectiveness. Over the past 10 years Tom has worked with organizations in numerous industries includ- ing oil and gas, healthcare, technology, and venture capitals. He is currently engaged with the Schulich School of Engineering at the University of Calgary to train, develop, and cultivate soft-skill teamwork competencies in order to equip graduates with strong
experiences.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication
promoting the retention and persistence of students of color in STEM” The Journal of Negro Education, vol. 80 no. 4, pp. 491–504, 2011.11. L. R. M. Hausmann, J. W. Schofield, and R. L. Woods, “Sense of belonging as a predictor of intentions to persist among African American and White first-year college students,” Research in Higher Education, vol. 48 no. 7, pp. 803-839, 2007.12. S. Hurtado, J. F. Milem, A. R. Clayton-Pedersen, and W. R. Allen, “Enhancing campus climates for racial/ethnic diversity: Educational policy and practice,” Review of Higher Education, vol. 21 no. 3, pp. 279-302, 1998.13. S. Hurtado, J. F. Milem, A. R. Clayton-Pedersen, and W. R. Allen, “Enacting diverse learning environments: Improving the climate for
-10 school year and the ASEE Pacific Northwest Section Outstanding Teaching Award in 2014.Ms. Tessa Alice Olmstead, Highline College Tessa holds a bachelor’s degree in Bioengineering from the University of Washington, and a second bach- elor’s degree in Dance. She is currently researching the use of reflective practices to improve engineering education at Highline College. She also serves as a research scientist for the Department of Neurosurgery at the University of Washington.Ms. Judy Mannard PE, Highline Community College c American Society for Engineering Education, 2016 Changing Student Behavior through the Use of Reflective Teaching Practices in an Introduction to
structures.To increase students’ learning, two teaching methods were used: case studies and problem-basedlearning (PBL). These methods were well-suited for teaching prospective scientists and engineersbecause they focus on cooperative sharing of ideas as well as healthy discussion and resolution ofproblematic issues [10, 11]. PBL-structured case studies promote higher-order learning skills, suchas application, analysis, synthesis, and evaluation. During case study-based learning modules,students were presented with a selected case to resolve the core issue by critically evaluating theinformation they had researched. They had opportunities to find the latest developments in a fieldand associate them with most recent social issues. This approach overcame
and in person summer community development projects.Celebrate diversity of faculty and students while reducing gaps in opportunities andresources. In similar ways that we invite our graduate students in the [program deleted forreview], recognizing and valuing differences among Colombian faculty and students allowedthem to position themselves with respect to the histories of development and with specificstruggles of vulnerable communities. For example, during participatory workshops with students,they mapped their perspectives, began to position themselves and their histories in relation to thehistories of struggles in their territory, such as violent conflict around gold mining or Stateneglect in delivering basic services to their communities
Engineering Experiment Station, TAMUS TEES Research Scientist, Texas A&M University System Internal Evaluator and Data Collector for TAMUS LSAMPDr. Shannon D. Walton, Texas A&M University Shannon D. Walton, PhD, is the Director of Recruiting for the Office of Graduate and Professional Stud- ies and the Director of Educational Achievement for the Dwight Look College of Engineering at Texas A&M University. Holding dual positions, Dr. Walton’s responsibilities range from the recruitment and retention of a talented and diverse graduate student population to the management of science, technol- ogy, engineering and mathematics (STEM) programs, like the NSF-funded Louis Stokes Alliance for Minority Participation
learning experiences and students designing to learn.Dr. Abhaya K. Datye, University of New Mexico Abhaya Datye has been on the faculty at the University of New Mexico after receiving his PhD in Chem- ical Engineering at the University of Michigan in 1984. He is presently Chair of the department and Distinguished Regents Professor of Chemical & Biological Engineering. From 1994-2014 he served as Director of the Center for Microengineered Materials, a strategic research center at UNM that reports to the Vice President for Research. He is also the founding director of the graduate interdisciplinary program in Nanoscience and Microsystems, the first program at UNM to span three schools and colleges and the Anderson
focused on critical thinking, time management, and effective communication—skills essential for academic and personal success. Slide 7: Example of Skill Building Workshop • In this skill-building workshop, we focused on three key areas: critical thinking, time management, and effective communication. The session began with an engaging icebreaker where students introduced themselves and shared one personal goal for the semester, fostering a sense of community and collaboration. We then delved into critical thinking, exploring techniques such as questioning assumptions, evaluating evidence, and making well-reasoned arguments. Students participated in group activities that challenged them to analyze
included if empathy development was amajor component examined or considered in the research. Many that integrated empathy did notdirectly explore its growth or development, it was more of a component considered or as part ofthe curriculum rather than the goal of the research. For example, McDonald and Pan (2020)presented feedback from graduate students on ethical considerations for artificial intelligence[49]. While this work elicited insight into prompting consideration of bias and fairness, fosteringempathy was more of an indirect outcome than the phenomena of focus. Alternatively studiesconducted in other countries were excluded since the interpretation and assessment of empathymay vary by culture depending on the societal norms and preferences
and workforce demands. Some universities have begun developinginnovative doctoral programs that explore alternative defense pathways beyond the traditionaldissertation model. One such initiative is the Pathway to Entrepreneurship Patent Program,which offers a creative, student-centered framework within graduate education [1]. The purposeof this study is to investigate doctoral students’ and faculty’s experiences and perceptions with apilot patent defense program in engineering disciplines. Despite growing interest, there is limitedresearch on an alternative patent proposal defense for engineering doctoral students. Mostdoctoral programs remain focused on conventional academic research and are often less alignedwith applied science and
chapters. She is a former board member of the National Association of Research in Science Teaching and past president of the Association for Science Teacher Education.Dr. Elizabeth Ring-Whalen, St. Catherine University Elizabeth A. Ring-Whalen is an Assistant Professor of Education at St. Catherine University in St. Paul, MN. She holds a PhD in Curriculum and Instruction - STEM Education from the University of Min- nesota. Her research focuses on STEM education and what this looks like in PreK-12 classrooms and explores teachers’ beliefs of integrated STEM as well as how these beliefs influence teachers’ practices and student achievement in the classroom. Alongside this research, she has worked to explore the atti
from the University of Victoria in 1987. As a Professor of Mechanical Engineering at the University of Waterloo, his research focus is machining, and he is well known for developing innovative 5-axis tool-positioning and flank- milling techniques. c American Society for Engineering Education, 2016 Towards a Multi-Disciplinary Teamwork Training Series for Undergraduate Engineering Students: Development and Assessment of Two First-Year WorkshopsAbstractTeams have become the default work structure in organizations; thus, in work settings thatemphasize teamwork, employees must have knowledge, skills and abilities (KSAs) tocommunicate and coordinate with their
conflicts between profit motives andpublic good, leading some engineers to change careers (1). Common ethical issues includeillegal waste dumping and data manipulation (2). Research suggests a concerning link be-tween academic dishonesty in engineering education and unethical behavior in professionalsettings. Studies have found that engineering students are among the most likely to engagein academic cheating (3; 4). This behavior appears to correlate with unethical conduct in theworkplace, as demonstrated by surveys exploring decision-making patterns in both academicand professional contexts (5). These findings highlight the need for interventions to addressunprofessional behavior. Researchers have identified various approaches, with most interven
courses on Computer Security, Be- havioral Cybersecurity, and Applied Computational Cognitive Modeling to undergraduate and graduate students. Dr. Aggarwal has strong interdisciplinary collaborations with various universities and such collaboration will be beneficial for this project. Dr. Aggarwal published her research work in various conferences including HFES, HICSS, ICCM, GameSec, and journals including Human Factors, Topics in Cognitive Science, and Computers & Security. Her papers in HICSS-2020 and GameSec-2020 received ©American Society for Engineering Education, 2023 Paper ID #39324 the
to his graduate work in the United States, he obtained his Bachelor’s degree from Malaysia and has participated in research projects involving offshore structures in Malaysia. As a graduate part-time instructor at Texas Tech University, he teaches an intro- ductory course in engineering to freshmen undergraduate students. He has taught at Texas Tech University since the fall of 2013.Mr. Siddhartha Gupta, Texas Tech University Siddhartha Gupta is a third-year PhD student in the department of Chemical Engineering at Texas Tech. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology and subsequently worked as shift engineer for two years with a Fortune 500 chemical company
computer science. The comprehensive goal of this NSF project is to explore when and to whichdegrees these imbalances are greatest and how the imbalances may influence students’opportunities to enter and paths throughout CS undergraduate programs. This poster/paper willpresent a portion of our findings obtained during a pilot qualitative study related to strategiesand support for overcoming obstacles through a variety of actions (policies, programs, pedagogy,culture) toward student success. This paper/poster will focus on the following research question:What are the strategies, structures, and scholarly attributes that support student experiences asper student’s lived experience?We designed the pilot study to validate our study instrument, namely
% of students will be engaged in some form of mentoring. They will be expected to take part in cooperative education communities through advising, tutoring, conducting seminars, or working as Teaching Assistants (for university credit or for pay through other university funds).7. The program will provide post-graduation preparation. There will be career training as well as opportunities to learn about graduate work and internships. Objective: Scholars will have the opportunity to attend career-related workshops such as seminars about professions in the STEM disciplines, resume writing workshops, or mock interviews. Those that wish to further their education will be provided information and training for GRE completion