FARID FARAHMAND is an Assistant Professor in the School of Engineering and Technology at Central Connecticut State University where he teaches Advanced Networking and Digital Systems. Farid’s research interests are optical networks and optical burst switching, including their architecture and performance. He is also the director of Advanced Internet Technology in the Interests of Society Laboratory. Page 12.91.10
missing out parts of recitations and lectures. We encouragethem to start working on their assignments as soon as possible and ask for faculty help prior to thedue date. Off-hours access to the computer laboratories is also available to avoid last momentscrambling. In the case of laboratory projects, the students need to show the progress of theirwork to the Teaching Assistant during the assigned hours leading to a disciplined approach tocompletion.REFERENCES[1] J. Michael Adams, “The Global Promise of Online Learning”, Keynote Speech, Third InternationalInternet Education Conference, Cairo, Egypt, Oct. 11-13, 2004.[2] EENG6633 Course Description, Fairleigh Dickinson University Graduate Studies Bulleting, p. 125,2005-07. (Also on the web at http
and promote innovative thinking from students. The lecture-based format of teaching which predominates in engineering education may not be the most effective manner to achieve these goals [1,2]. Constructivist learning theory asserts that knowledge is not simply transmitted from teacher to student, but is actively constructed by the mind of the learner through experiences. [3,4]. Students learn best with hands-on projects with practical purpose [5]. Laboratory based projects are the best vehicle for demonstrating many aspects of engineering problem solving situations. However, in most cases, laboratory environments are set up as “exercises” which have very clear, predetermined outcomes. This is done to reinforce lecture material that is
device generally hasno resemblance to a refrigerator the students are familiar with, so it can be difficult for them torelate to the device on a practical level. We recognize that many of the laboratory exercises atour own institutions are of this type, which is part of the motivation for this work. The seven exercises outlined in this paper are intended to be used in several undergraduatecourses. No attempt is being made to entirely replace traditional lab exercises in these courseswith our own, but to supplement them. A key difference between our exercises and traditionalexercises is that ours are designed to teach core principles rather than to demonstrate them. Thistype of learning will be discussed later in this paper as the pedagogical
AC 2007-3055: TEACHING OF ESSENTIAL MATLAB COMMANDS IN APPLIEDMATHEMATICS COURSE FOR ENGINEERING TECHNOLOGYGanapathy Narayanan, University of Toledo Page 12.1365.1© American Society for Engineering Education, 2007 Teaching of Essential MATLAB Commands in Applied Mathematics Course for Engineering TechnologyAbstractThe teaching of applied mathematics for students in the Engineering Technology (ET)curriculum is always a challenge in terms of imparting the essential mathematical knowledge foruse in changing technological environments. In this paper, essential MATLAB commands inthe applied mathematics course for ET students are emphasized. Of several useful
AC 2007-1143: LEARNING EXPERIENCES OF USING TEACHING ANDASSESSMENT TOOLS FOR SOLID MECHANICS COURSERaghu Echempati, Kettering University RAGHU ECHEMPATI is a Professor of Mechanical Engineering at Kettering University (formerly GMI Engineering & Management Institute). He has over 20 years of teaching, research and consulting experience. His teaching and research interests are in the areas of Mechanics, Machine design, and CAE (including metal forming simulation and Design of Machines and Mechanisms). He is very active in the Study Abroad Programs at Kettering University. He is a member of ASME, ASEE, and SAE, and a Fellow of the ASME
AC 2007-1208: TEACHING FIELD PROGRAMMABLE GATE ARRAY DESIGN(FPGA) TO FUTURE ELECTRICAL ENGINEERING TECHNOLOGISTS:COURSE DEVELOPMENTNasser Alaraje, Michigan Technological UniversityJoanne DeGroat, Ohio State UniversityAurenice Lima, Michigan Technological University Page 12.1357.1© American Society for Engineering Education, 2007 Teaching Field Programmable Gate Array Design (FPGA) to Future Electrical Engineering Technologists: Course DevelopmentAbstractFPGA-based re-programmable logic design became more attractive during the last decade, and theuse of FPGA in digital logic design is increasing rapidly. The need for highly qualified FPGAdesigners is
AC 2007-2390: A PILOT PROGRAM ON TEACHING DISPERSED PRODUCTDEVELOPMENT IN COLLABORATION WITH AN INTERNATIONALUNIVERSITYKatja Holtta-Otto, University Of Massachusetts-DartmouthPia Helminen, Helsinki University of Technology (TKK)Kalevi Ekman, Helsinki University of Technology (TKK)Thomas Roemer, University of California-San Diego Page 12.88.1© American Society for Engineering Education, 2007 A Pilot Program on Teaching Dispersed Product Development in Collaboration with an International UniversityIntroductionDispersed product development is becoming ever more prevalent across industries. Mostmultinational companies have research and development laboratories
AC 2007-1707: MULTIMEDIA AIDED PROTOTYPE E-LEARNING (MAPEL)MODULES FOR TEACHING THE FUNDAMENTALS OF THE FINITE ELEMENTMETHODVenkata Seshada Aluri, University of Arkansas Venkata Aluri is currently working on his M.S. in the Department of Mechanical Engineering at the University of Arkansas. He received his B.S. in Mechanical Engineering from Osmania University in Hyderabad, India in 2004.Javed Alam, Youngstown State University Javed Alam is a professor of Civil and Environmental Engineering at Youngstown State University. He obtained his M.S. degree from Asian Institute of Technology and a Ph.D. degree from Case Western Reserve University. His research interests are in the area of Structural
speciesin a macroscale model. Scaling permits identifying the various reaction regimes and domains thatcan occur on both the micro- and macroscale.2e. Process ModelingScaling analysis is used in teaching a course in process modeling to facilitate the following: toassess what approximations can be made in developing a tractable model for the process; todetermine the appropriate values of the process parameters in designing either numerical,laboratory, or pilot-scale testing of a process; and in determining the optimal minimumparametric representation of the describing equations for the process in order to correlatenumerical or experimental data.3. The Scaling Analysis TechniqueThe ○(1) scaling analysis technique of interest here has been described
AC 2007-257: A WEB-BASED COMPLEMENT TO TEACHING CONSERVATIONOF MASS IN A CHEMICAL ENGINEERING CURRICULUMLale Yurttas, Texas A&M University Lale Yurttas is a Senior Lecturer and Assistant Department Head in Chemical Engineering Department at Texas A&M University. She chairs Departmental ABET Committee. She also participates in Engineers Without Borders-USA, especially in TAMU Chapter and coordinates service learning activities for the current NSF project. She has 10 years of experience in engineering education and curriculum development.Zachry Kraus, Texas A&M University Zachary Kraus is a Ph.D. student at Texas A&M University in the Department of Chemical Engineering
AC 2007-2791: A REAL-WORLD EXPERIENCE USING LINKAGES TO TEACHDESIGN, ANALYSIS, CAD AND TECHNICAL WRITINGJames Sherwood, University of Massachusetts-Lowell Dr. Sherwood joined the University in 1993. He worked for Pratt and Whitney Aircraft and BF Goodrich as a structural engineer before entering academia. He is currently Director of the Baseball Research Center and Co-Director of the Advanced Composite Materials and Textiles Laboratory. His scholarly interests include constitutive modeling, mechanical behavior of materials with emphasis on composites, finite element methods with emphasis on high speed impact, sports engineering with emphasis on baseball and innovative teaching methods in
, L. Vanasupa, T.T Orling, and L. Christensen, “Travelogue from the Materials World: A First Week Laboratory Activity”, ASEE Annual Conf. Proc., 3664 (2004).7. W. D. Callister, Fundamentals of Materials Science and Engineering: 6th Edition, John Wiley and Sons, (2001).8. PRIME website: http://www.engr.sjsu.edu/sgleixner/PRIME/9. M. Alley, M. Schreiber, and J. Muffo, “Pilot Testing of a New Design for Presentation Slides to Teach Science and Engineering,” 35th ASEE/IEEE Frontiers in Education Conf., T1A-1 (2005).10. D. Stoeckel, “Nitinol Medical Devices and Implants”, Min. Invas. Ther. & Allied Technol., 9, p. 81 (2000).11. S. Gleixner, O. Graeve, E. Douglas, “Project Based Introductory
Stephen Cooper, “Something Old, Something New: Integrating Engineering Practice into the Teaching of Engineering Mechanics,” Journal of Engineering Education, Apr, 1995, pp. 105-115.6. Shapira, Aviad, “Bringing the Site into the Classroom: A Construction Engineering Laboratory,” Journal of Engineering Education, Jan, 1995, pp. 1-5.7. Tongtoe, Samruam and Siegfried Holzer, “Learning Statics with Multimedia,” Annual Conference of the American Society of Engineering Education – Southeast Section, 2001. Page 12.174.11
AC 2007-455: A STUDENT-CENTERED SOLAR PHOTOVOLTAICINSTALLATION PROJECTArthur Haman, University of Detroit Mercy In his fifty years at the University Arthur C. Haman has progressed through the academic ranks to his current position of Professor of Mechanical Engineering and Associate Dean for Operations. His industrial experience was acquired as a Structures and Armaments engineer at Northrup Aviation and as an engineer in the Scientific Laboratory of the Ford Motor Company. He has also held visiting professorships at what was Carnegie Institute of Technology and Dartmouth College. His current interests are in thermodynamics and internal combustion engines.Robert Ross, University of Detroit Mercy
AC 2007-1539: CONCEPTUAL DESIGN ENVIRONMENT FOR AUTOMATEDASSEMBLY LINE – FRAMEWORKSheng-Jen Hsieh, Texas A&M University Dr. Sheng-Jen (“Tony”) Hsieh is an Associate Professor in the College of Engineering at Texas A&M University. He holds a joint appointment with the Department of Engineering Technology and the Department of Mechanical Engineering. His research interests include engineering education, cognitive task analysis, automation, robotics and control, intelligent manufacturing system design, and micro/nano manufacturing. He is also the Director of the Rockwell Automation laboratory at Texas A&M University, a state-of-the-art facility for education and research in
AC 2007-92: DESIGN PANEL: A TOOL FOR ASSESSMENT IN DESIGN COURSESDave Kim, Washington State University-Vancouver Dr. Dave (Dae-Wook) Kim is an Assistant Professor of School of Engineering and Computer Science at Washington State University Vancouver. He received his Ph.D. from the University of Washington, Seattle, and his M.S. and B.S. at Sungkyunkwan University, Korea. His teaching and research interests include manufacturing processes, composite materials, and mechanical behavior of engineered materials.Hakan Gurocak, Washington State University-Vancouver Hakan Gurocak is Director of School of Engineering and Computer Science and Associate Professor of Mechanical Engineering at Washington
AC 2007-2846: BRIDGING BEAR HOLLOW: A SERVICE LEARNING CAPSTONEDESIGNNorman Dennis, University of Arkansas Norman D. Dennis, Jr., is a Professor in the Department of Civil Engineering at the University of Arkansas, Fayetteville. He is active in both ASCE and ASEE, currently serving as a member of ASCE's committee for faculty development and as a program coordinator for the EcCEEd teaching workshop. Dennis is also a director of the CE division of ASEE and past chair or the Midwest section of ASEE. His research interests include laboratory and field determination of geotechnical material properties for transportation systems and the use of remote sensing techniques to categorize geomaterials
AC 2007-2346: DESIGN OF A RENEWABLE ENERGY BASED POWER SYSTEMFOR A ZERO-ENERGY VISITORS' CENTERSamuel Lakeou, University of the District of Columbia Samuel Lakeou received a BSEE (1974) and a MSEE (1976) from the University of Grenoble (Universite Joseph Fourier), and a PhD in Electrical Engineering from the Ecole Nationale d’Electronique et de Radioelectricite de Grenoble of the National Polytechnic Institute of Grenoble, France, in 1978. He is currently a Professor and Chair of the department of electrical engineering at UDC. He was formerly staff member at the New Products Laboratory of RCA’s Consumer Electronics Division in Indianapolis, IN (1984-86).Esther Ososanya, University of the District
Department where he teaches 3D Design Principles and 3D Computer Modeling. Professor Radermacher specializes in three-dimensional problem solving and multiple-material construction techniques. His research activity primarily focuses on themes of technology, consumerism and personal identity. He creates objects and sculpture that question product marketing, consumer attitudes and social formations. Professor Radermacher exhibits his work in national venues including the S.O.F.A. expositions in New York and Chicago. Professor Radermacher is an active member of the “Foundations in Art: Theory and Education” organization and the College Art Association
Engineering Students and their Implications for Successful Teaching with Instructional Technology, British Journal of Engineering Education, UK, Vol. 5, No. 1, pp. 29-42.8. Anderson, E., Chandrashekar, N., Hashemi, J., & Kholamkar, S., (2006). Web-based Delivery of Laboratory Experiments and Its Effectiveness Based on Student Learning Style. Proceedings of the 2006 ASEE Annual Conference and Exposition, Chicago, IL, June 18-21, 2006.9. Zywno, M.S., & Stewart, M.F., (2004). Online Control Systems Tutorials. The module received Honourable Mention in 2005 competition for the COU/OPAS Award for Excellence in Teaching with Technology. Online at: [Accessed January 10, 2007].10. Digital Media Projects Office, Ryerson
design course. As is the nature of thecourse, future semesters will experience incremental changes. We intend on increasing theinteraction with video material by making available more videos to build a larger archive ofreference material. In the present semester, we are video-recording laboratory sections in whichwe are teaching the effective use of software packages, such as Mathworks Matlab and AliasMaya. We intend on evaluating the availability of this reference material by comparing studentperformance to prior semesters.References[1] Abowd, G.D., Atkeson, C.G., Feinstein, A., Hmelo, C., Kooper, R., Long, S., Sawhney, N., Tani, M. Teaching and Learning as Multimedia Authoring: The Classroom 2000 Project. In Proceedings of the ACM
engineering curricular reform. His research areas include vibration and optimization techniques. In 2005 he was the recipient of the Ralph R. Teetor Educational Award from the Society of Automotive Engineers.Jennifer Courtney, Rowan University Jennifer Courtney is an Assistant Professor in the Writing Arts department at Rowan University, where she teaches first year writing, College Composition II/Sophomore Clinic, and courses on writing assessment. Her research interests include writing in the disciplines (WID), assessment, and information literacy.Kevin Dahm, Rowan University Kevin Dahm is an Associate Professor of Chemical Engineering at Rowan University. He has received the 2002
AC 2007-1121: A FOUR-YEAR PROGRESSION OF OPEN-ENDED PROJECTS INAN UNDERGRADUATE BIOMEDICAL ENGINEERING CURRICULUMDaniel Cavanagh, Bucknell UniversityJoseph Tranquillo, Bucknell UniversityDonna Ebenstein, Bucknell University Page 12.40.1© American Society for Engineering Education, 2007 A Four Year Progression of Open-Ended Projects in an Undergraduate Biomedical Engineering CurriculumAbstractOne of the important instructional goals of our Biomedical Engineering Program is to providestudents with the opportunity to develop strong, independent project skills in both the classroomand the laboratory. To accomplish this goal, the Program has developed a
corroboratemuch of what is known through widespread WAC (writing-across-the-curriculum) practice.Writing proficiency within a given discipline is created by writing within that discipline.Participants reported that they learned and are learning to write like engineers by makingmistakes; by following outlines and formats; and by using specific style guides. To the follow-up question of what engineering professors might do to improve the teaching and learning ofwriting, participants unanimously agreed that standards for good writing must be clearlyarticulated. Asked if courses in other disciplines might have prepared them to write forEngineering classes, participants were in general agreement that such writing had little bearingon their coursework. This
to acontinued funding commitment which can survive the departure of any critical individual oneither side of the partnership.MEDITEC (Medical Engineering Development and Integrated Technology EnhancementConsortium) is an industry/academic partnership that matches multidisciplinary teams ofundergraduate and masters-level engineering students with the project needs of biomedicaldevice developers. Industry provides the project topics and technical mentors, while projects areself-selected by students based upon a match with their background skills and educational goals.Reconfigurable project space, with physical isolation between the confidential projects ofcompeting companies, is provided on campus. This physical laboratory serves as the focus
transition from first-year writing of chemistry laboratory reports to second-year writing ofengineering laboratory reports.Bibliography[1] Mullin, Joan A. “Writing Center and WAC.“ in Susan H. McLeod, et. al. WAC for the New Millennium. Urbana, Illinois: NCTE, pp. 184-7, 2001.[2] McLeod, Susan H. and Eric Miraglia. “Writing Across the Curriculum in a Time of Change,” in Susan H. McLeod, et. al. WAC for the New Millennium. Urbana, Illinois: NCTE, pp. 84-87, 2001.[3] Jernquist, Kathleen. “Guiding Instructors and Tutors to Teach a Language for Assessment to First-Year Writers.” Writing Program Administrators Conference. Anchorage, July 2005.[4] Townsend, Martha. “Writing Intensive Courses and WAC.” in Susan H. McLeod, et. al. WAC for the New
studentlearning in their graduate teaching. Most of the faculty currently rely on paper-and-pencil homeworks rather than homeworks submitted electronically. Likewise,the faculty regularly use paper-and-pencil exams during class time but only oneperson uses electronically-submitted exams administered during class time.Generally, our faculty do not currently use take-home exams, either paper-and-pencil or with electronic submission. The faculty are split on the extent to whichthey use laboratory activities and associated reports to assess student learning ingraduate courses. On the other hand, projects, which are completed outside ofclasstime and may involve group work, are often used in our graduate curriculum.Similarly, graduate student learning is
. The inspiration to structure a course around the designing andbuilding of educational museum displays was inspired by similar innovative classactivities by Crone4 and Pruitt5. MATE X424 was offered in the Fall of 2006, and was a2-unit activity (i.e., cross between a lecture and laboratory type class). The class met for4 hours a week, and much of the class time was devoted to actually working on thedisplays. The small class size of 6 students allowed us to truly work together as a team.Due to the service learning component of the course, the students were now working fortheir client, Chick Fidel and the school children. The instructor functioned more as theproject manager, rather than the judge that determines their grades (although that task
school teachers connecting math, science and engineering.Amaneh Tasooji, Arizona State University Amaneh Tasooji is an Associate Research Professor in the School of Materials at ASU and has been teaching and developing new content for materials science and engineering classes and laboratories. She has developed new content and contextual teaching methods from here experience as a researcher and a manager at Honeywell Inc. She is currently working to develop new assessments to to reveal and address student misconceptions in introductory materials engineering classes. Page 12.540.1© American Society