juniors), team activities typicallyinvolve only the six or seven students enrolled in the capstone project. All the HPVC studentsexpressed frustration that they were “not allowed to do anything” until they were in charge. Thenon-capstone students, and especially new members, have no input on the design or building oftheir vehicle. Often the capstone students do not even include these other team members incommunications to arrange meetings or work times. Thus, students have very little opportunityto learn anything about the vehicle design, component manufacturing, or administrative tasksbefore they are responsible for the entire project. Because of the tight affiliation with thecapstone graduation requirement, this team maintains formidable
wereencouraged to continue to work together in the College of Engineering Senior Design I andSenior Design II courses with the intent of them being able to commercialize the design.Part of the faculty effort was to build and promote a culture of innovation among engineeringstudents; therefore as a follow up from the course offering in the spring 2013 the facultysupported two projects during their capstone senior design courses for the fall 2013-spring 2014semesters with a strong plan for commercialization of the product. These students weremotivated, self-driven and excited about their projects and the possibility of launching a businesssuccessfully by using our program, and taking advantage of the resources available to them fromour University’s Office
Carolina University providea series of five PBL courses from the freshman to the senior year. The last two of these coursesform the fourth year capstone sequence where students do projects for external sponsors,typically companies. Leading up to this point the students learn and apply the skills required forsuccessfully executing major technical projects.This paper will outline the shared PBL course sequence at Western Carolina University in theSchool of Engineering+Technology. The School houses disciplines ranging from Electrical toMechanical Engineering. More uniquely, the Engineering Technology and Engineering programsare not separated into separate schools. As a result the PBL project teams contain amultidisciplinary mix of students with a
. His research focuses on diverse areas such as: D ©American Society for Engineering Education, 2024 Smart System Projects in Computer Engineering ProgramAbstractThe purpose of capstone design project courses is to provide graduating senior students with theopportunity to demonstrate understanding of the concepts they have learned during their studiesand to apply their professional skills and knowledge in a single experience and prepare them forwork in industry. As with many computer science and engineering programs, students of thecomputer engineering program at Utah Valley University (UVU) conclude their degree programswith a semester capstone design experience. The intent is for students to utilize
corporations and operated her own communications consulting firm.Dr. Robert Hart P.E., University of Texas at Dallas Robert Hart is an Associate Professor of Practice in the Mechanical Engineering Department at the Uni- versity of Texas at Dallas (UTD). He teaches the capstone design course sequence and serves as a Director for the UTDesign program, which facilitates corporate sponsorship of capstone projects and promotes re- source sharing and cross-disciplinary collaboration among engineering departments. His professional interests are in the areas of engineering education, fluid mechanics, and thermal science. He is an active member of ASME and ASEE and has been a member of the Capstone Design Conference organizing com
question, no response is recorded under neutral,disagree and strongly disagree. Unlike group-project activities incorporated under some of theengineering curriculum, which is composed of students with the same major discipline andclassification and typically lasts a couple months or the formal senior capstone design projectswhich extend throughout a semester or two of the students’ senior year, the MAKERS prototypedevelopment team are composed of students from diverse background and classification workingtowards a specific goal. All students are required to actively participate and contribute to theproject, attend periodic meetings, and present the prototype development project at the jointannual STEM conference of all the participating
Paper ID #20143Integrated Solar and Piezoelectric Renewable Energy ProjectDr. Herbert L. Hess, University of Idaho, Moscow Herb Hess is Professor of Electrical Engineering at the University of Idaho, where he teaches subjects in He received the PhD Degree from the University of Wisconsin-Madison in 1993. His research and teaching interests are in power electronics, electric machines and drives, electrical power systems, and analog/mixed signal electronics. He has taught senior capstone design since 1985 at several universities.Dr. Saied Hemati, University of Idaho, Moscow Saied Hemati received the bachelor’s and master’s
Biotechnology Park. In addition, he is currently CEO of SpherIngenics Inc. an early stage company focused on enhancing stem cell therapies for therapeutic and reconstructive procedures. Previously in academia, Bost was at the Georgia Institute of Technology where he developed the Master of Biomedi- cal Innovation and Development (BioID) Program. For six years, he was also director of the biomedical engineering capstone design courses and sophomore introductory course for medical engineering design. During this time, over 200 BME capstone teams worked on projects with clinicians, surgeons, non-profit medical organizations, and medical industry companies to create unique solutions for improved patient care. Prior to
degree of complexity in design, the use of simulation enablesengineering students the ability to develop solutions for the system requirements. However, thiscan become problematic to adequately provide a realistic environment for teaching the design ofrobotics systems. In recent years, with the coordination between Cal Poly Pomona and BoysRepublic, we have developed Project Ponderosa. Project Ponderosa provides Cal Poly Pomonaengineering students the opportunity to design various robotics, and automation systems that willbe operated and maintained by Boys Republic students for Christmas Wreath Production at theirfacility. This project constitutes the college student’s senior capstone project providing themwith real-world experiences to prepare
writing component in a year-long senior capstone materialsscience and engineering (MSE) course sequence. This course requires students to completeprojects for clients and produce a written report, among other deliverables. To focus more onwriting education, the engineering professors brought in an English professor, who researchesengineering communication and is coordinating this project, to consult on assignments, commenton student work, and present on writing topics, including managing the writing aspect ofcollaborative work. Here, we assess the impacts of interventions on student writing andcollaboration, focusing on women’s experiences through a series of interviews. These interviewsfocused on learning more about women’s past experiences
Classroom,” LEGO Engineering, 2014. [Online]. Available: http://www.legoengineering.com/learning-stem-in-the-classroom/.[6] “Criteria for Accrediting Engineering Programs, 2020 – 2021,” abet.org, 2020. [Online]. Available: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-progr ams-2020-2021/. [Accessed: 21-Jan-2020].[7] B. I. Hyman, “From Capstone to Cornerstone: A New Paradigm for Design Education,” Int. J. Eng. Educ., vol. 17, no. 4–5, pp. 416–420, 2001.[8] R. N. Savage, K. C. Chen, and L. Vanasupa, “Integrating Project-based Learning throughout the Undergraduate Engineering Curriculum,” vol. 8, no. 3, pp. 15–27, 2007.[9] C. M. Kellett, “A project-based learning
Paper ID #26931Board 38: Experiential Learning Opportunities through Collaborative ProjectsDr. Rustin G Vogt, California State University Sacramento Rustin Vogt is a professor of Mechanical Engineering at California State University, Sacramento. Pro- fessor Vogt holds a BS in Mechanical Engineering and a Ph.D. in Materials Science Engineering. His teaching focus is on Materials Selection in Design and Sustainability, Manufacturing, Machine Design, and the capstone senior project course. Professor Vogt was the lead faculty on for the CSU Sacramento State entry into the 2016 SMUD Tiny House Competition and played a supporting
impact.Constructivist theories of learning also recognize that learning is a social activity6. This meansthat the laboratory instruction and project-based design courses can be identified as opportunitiesto improve students’ ability to work in teams, as well as their communication skills. As a result,many civil engineering programs now incorporate many of these dimensions in their designclasses, ranging from cornerstone to capstone design courses7.IllustrationsThe civil and environmental engineering department has implemented project (cooperativelearning) based exercises in the CE 3801 Environmental Engineering Laboratory course (juniorlevel civil engineering course). In this course, student groups (three to four) were formed tofacilitate team-based
control system. Dr. Ansari is a professor of Computer Engineering at Virginia State University.Dr. Pamela Leigh-Mack, Virginia State UniversityDr. James Irvin Cooke Jr., Virginia State University Director of Assessment and Senior Capstone Experiences Program Coordinator of Information Logistics program Department of Technology Virginia State University c American Society for Engineering Education, 2019 Extended Summer Research to Senior Design Project Jinmyun Jo1, Xiaoyu Zhang2, Pamela Leigh-Mack1, Ali Ansari1, James I. Cooke Jr1 Virginia State University, Petersburg, VA 238061 Old Dominion University, Norfolk, VA 235292IntroductionThere
. Acciaioli, "Improving the success of “bottom-up” development work by acknowledging the dynamics among stakeholders: a case study from an Engineers Without Borders water supply project in Tenganan, Indonesia," Water Science and Technology, vol. 59, no. 2, pp. 279-287, 2009.[5] A. Wittig, "Implementing Problem Based Learning through Engineers without Borders Student Projects," Advances in Engineering Education, vol. 3, no. 4, p. n4, 2013.[6] A. R. Bielefeldt, M. M. Dewoolkar, K. M. Caves, B. W. Berdanier, and K. G. Paterson, "Diverse models for incorporating service projects into engineering capstone design courses," International Journal of Engineering Education, vol. 27, no. 6, p. 1206, 2011.[7] D. Akbar
engineering faculty advisor, principal investigator and project manager over thepast eight years on WERCware has also been a valuable learning experience and significantprofessional development opportunity for this author, much more than advising the former once-and-done senior capstone projects typical of our previous undergraduate curriculum. Theongoing multiyear project curriculum encourages continuity of focus, with opportunities todevelop long-term relationships while working toward meeting and satisfying real communityneeds. Learning to address the social need of those with high functional autism and othercognitive and behavioral disabilities brings the technology in a unique direction (e.g., exploringBiometric sensors to select the best
Paper ID #31251Interdisciplinary Design Project Teams: Structuring an ImpactfulExperienceProf. Jeanne M Homer, Oklahoma State University Professor Homer received her Bachelor of Science from the University of Illinois at Urbana-Champaign and her Master of Architecture from Arizona State University in Tempe. She has been a practicing ar- chitect in Chicago, Phoenix, and Oklahoma. While she was practicing, she taught at the Art Institute of Chicago and at Arizona State University before teaching in Stillwater full time for 17 years. Profes- sor Homer received the 2013 International Education Faculty Excellence Award, the
can lead to mismatches in expectations as wellas missed opportunities for fruitful collaboration.This paper explores the perceived value of participating as an industry-sponsor tomultidisciplinary engineering design capstone courses. Four industry partners wereinterviewed in the beginning, middle and end of two project-based courses (and one industrypartner once) to track what value they expected from the course and what value theyperceived to be delivered. The thirteen in-depth interviews averaged 50 minutes, were audio-recorded and transcribed for analysis.Based on the qualitative analysis, the motivation to take part as a sponsor in these project-based courses initially centered around new innovative products. However, there was acontinuum
management, crash analysis, and the design and operation of rural two-lane highways. At Canterbury, Glen taught profes- sional design project courses since 2006 and also delivered oral and written presentation skills to students for many years. Since 2013 he was responsible for the introduction of a new professional engineering skills course to final-year BE students.Mark W. Milke P.E., University of Canterbury Mark Milke is a Professor in the Department of Civil and Natural Resources Engineering, University of Canterbury, in Christchurch, New Zealand. Since 1991 he has taught and conducted research there on solid waste management, design for civil and natural resources engineers, engineering decision-making
. Entering the 2015-2016 academic year,program faculty envisioned a capstone design experience that would engage student teams in ayear-long, professional level design project sponsored by an industry client. The first two yearsof the capstone design program have been inarguably successful, and in this paper we identifyand reflect on the keys to our success. The intention for writing this paper is to ensure thesuccess of the program is repeatable, and to assist other programs, especially those residing insmall liberal arts universities, in starting or revising their own senior design experience.Our key factors in assembling a successful industry-sponsored capstone design program havebeen: (1) faculty buy-in and involvement, (2) engaged industry
engineering approach withalternative implementations of the capstone engineering courses by other colleges anduniversities6-13. Specifically, any capstone projects involving 3D printing and Arduinos todesign a quadcopter are investigated and summarized13-23. The paper also attempts to comparethe student’s prototype with other popular commercially available quadcopters, including somecost comparisons24.Description of the Original Master of Science in Electrical EngineeringUniversity’s Master of Science in Electrical Engineeringprogram offers an in-depth understanding of modernsystems design for emerging and evolving technologies.Students experience design projects in digital, spread-spectrum and space communications, CMOS circuitry andcomputer
civil engineering design projects. The projects ex- pose the civil engineering students to real world design problems. The students gain first hand experience communicating professionally, developing schedules, meeting deadlines and preparing professional qual- ity reports and presentations. Prof. Brunell is also the director of the Water Resouces graduate program. In addition to Senior Design she teaches Surveying and Water Resources. c American Society for Engineering Education, 2020AbstractCivil Engineering Capstone Design requires undergraduate students to work in teams withprofessional mentors to develop solutions to relevant real-world problems. Recent changes toboth ABET Engineering
Interdisciplinary BmE Capstone Design Course to Enable the Continued Supported Employment of Persons With DisabilityAbstract (Mission and Outcomes)A humanitarian need exists to help individuals with disability remain employed in a supportedwork setting. In partnership with a local not-for-profit service agency, our students carried out anentrepreneurial multi-year interdisciplinary biomedical engineering capstone project that innova-tively involved using commercial industrial electronics to make beverage container recyclingmore worker-friendly, flow-efficient and accountable. The project’s mission was to improve theefficiency of, and maximize the dollar return from, a beverage container recycling business,while taking into account
process of designing, building, and flying an unmanned aerialvehicle (UAV) capable of assisting first responders. As students engaged in design activities, asecond goal was to develop an instrumentation methodology and data architecture needed tofully characterize industry relevant engineering design behaviors as manifested in the digitalenvironments. Multi-disciplinary, multi-university teams consisting of students from 5 major USuniversities participated in a two semesters, year-long capstone project. These courses have beeneffectively offered starting 2013. The third cohort of student teams is now experiencing thiscapstone course. This enables us to gather a significant amount of data related to designbehaviors that form the basis for many of
; engineering design decisions are consequential for the design and how it performsupon implementation. To use a spoon, the person may need to like the color; and the material ofthe blade must be strong enough for an endurance task. Because design decisions areconsequential, undergraduate engineering programs have a responsibility to prepare students asdecision makers.Capstone design courses allow undergraduate engineering students to experience open-endeddesign projects before starting their professional careers. As such, capstone serves as anopportunity to develop students’ ability to make decisions in an ill-structured setting. Typically,explicit instruction related to decision making includes an introduction to rationalistic tools, suchas decision
had been violated. Adherence to this plan was then assessed three times throughouteach semester through self- and team peer evaluation surveys that included questions specificallyaddressing behaviors that promote inclusivity, psychological safety, respectful communication,and conflict resolution. This integration of the DEI skills into an experiential learningenvironment is a critical component of the Learn-Practice-Assess model’s implementation, andrepresents a potential paradigm shift in the way that DEI concepts and capstone projects can bewoven together.Conclusion & Next StepsOver the last two years, ~250 Penn State aerospace engineering senior undergraduate studentshave participated in the DEI Module as part of their capstone design
be for our students asfuture engineers.Professional preparation of engineers, as with the law, and medicine, necessitates the applicationof knowledge through an applied rehearsal in authentic learning situations. The clinic of law ormedicine is sometimes practiced as a capstone educational experience in fields of engineering.Having engineering students work together on a project is becoming a prominent pedagogicalapproach in upper-level engineering undergraduate courses and graduate courses. This directlysupports the professional practice and professional formation for many fields of engineering andaddresses many ABET student learning outcomes.A multiple case-study approach was used to apply and illustrate a “product”-based learningframework
Electrical Engineering, Computer Engineering,Computer Science, Computational Data Science, and Software Engineering. This paperpresents the progress report of this scholarship program and its impact on the institution, itsComputer Science and Engineering Programs, and the community. Also, it presents the effect ofthe high-impact practices in this program in retention of computer science and engineeringstudents. High-impact practices reported include Capstone Courses, Collaborative Projects,First-Year Experiences, Internships, Undergraduate Research, and Writing Intensive Courses.IntroductionThe National Science Foundation (NSF) established the Scholarships in STEM (S-STEM)program in accordance with the American Competitiveness and Workforce
Washington Fellowship for Young African Leaders brings African entrepreneurs toUnited States campuses for six weeks every summer, providing an excellent opportunity toidentify potential clients for global engineering class projects. The university’s engineeringfaculty partnered with fellows on projects in freshman Impacts of Engineering, junior LeanManufacturing, and senior Capstone Design classes. Projects have included conceptual productdesign, detailed product design, process selection, manufacturing equipment design, andfacilities design. Several engineering and technology majors have participated in theprojects. The highlight is a micro-hydroelectric generator design project spanning severalclasses and semesters.The projects are similar to
Computational modeling and interdisciplinary projects for engineering technology students The advances in nanotechnology, tissue engineering, and robotics has precipitated the need forengineering technology students who can understand and contribute to simulation and development ofcomputer models for complex command, communications, biological and control systems.The engineering faculty at our university is developing multidisciplinary projects/classes, which includehands-on application-oriented laboratory exercises, which can actively engage students. These laboratoryprojects will also be helpful to students who will take capstone senior project coursework.This paper will discuss the new, interesting multidisciplinary projects