, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and success in retention of
500 individual calculus students on their course projects. He was given an Outstanding Advising Award by USF and has been the recipient of numerous teaching awards at the department, college, university (Jerome Krivanek Distinguished Teaching Award) and state (TIP award) levels. Scott is also a co-PI of a Helios-funded Middle School Residency Program for Science and Math (for which he teaches the capstone course) and is on the leadership committee for an NSF IUSE grant to transform STEM Education at USF. His research is in the areas of solution thermodynamics and environmental monitoring and modeling.Dr. Venkat R. Bhethanabotla, University of South Florida Venkat Bhethanabotla obtained his BS from Osmania
a key source of successfulinnovations; thus, techniques to support creative conceptual design are imperative in engineeringeducation. However, teaching students to “think innovatively” has been difficult becauseeducators lack effective instructional methods. While there are a variety of proposed methods foridea generation, only one has been empirically validated in multiple scientific studies: DesignHeuristics. Design Heuristics are prompts that guide designers in exploring the design spaceduring concept generation. In empirical studies in engineering and design classrooms, DesignHeuristics have been shown to be readily adopted by students, and to result in more creative, andmore diverse, concepts.The focus of this project is to create a
the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include faculty development and evaluating con- ceptual knowledge and strategies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for mate- rials science and chemistry classes. He is currently conducting research in two areas. One is studying how strategies of engagement and feedback and internet tool use affect conceptual change and impact on students’ attitude, achievement, and
experience conducting evaluation and design-based research studies in complex settings including and community- based settings. ©American Society for Engineering Education, 2023Material Agency with Summer STEM Youth Designing with Micro:bitsIntroduction and Research PurposeIn this poster, we report results related to an NSF EEC CAREER project that characterizesframing agency, defined as making decisions and learning in the process of framing designproblems. Our past studies of framing agency have relied on discourse analysis to characterizeagency in talk [1-3]. However, this analytical approach, with its focus on talk, misses muchabout the materials in the design process, and given that design is commonly cast as
resiliency, transportation facility planning and design, high- way safety, and active living by design. He teaches courses in capstone engineering design, engineering management, transportation engineering, geographic information systems, and land surveying. c American Society for Engineering Education, 2017 Advancing Diversity Initiatives in the Civil Engineering Profession: Outcomes of an NSF S-STEM Grant at a Regional Undergraduate Teaching InstitutionA student scholarship and enrichment program was established in 2012 to help address thepersistent problem of underrepresented minority, female and socioeconomically disadvantagedstudents enrolled in civil engineering
Engineering Education at Virginia Tech with Affiliate Faculty status in Biomedical Engineering and Mechanics and the Learning Sciences and Technologies at Virginia Tech. He holds degrees in Engineering Mechanics (BS, MS) and in Educational Psychology (MAEd, PhD).Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design
Capstone project in the junior and senior years. EPIC Scholars also were offered study group sessions run nightly by upper year EPIC scholars, right in their living-learning community. • Focused Mentoring: All EPIC scholars were assigned either one of the PIs or another women faculty as their academic advisor and informal faculty mentor. • Community Building: EPIC scholars were part of a college club and Society of Women Engineers Interest Group that provided mentorship, socializing, programming, and leadership opportunities. EPIC scholars were frequently (if not always) the club officers. Under goal (3), transition students into the workforce, the following activities were carried out: • Professional
. As a capstone, teachers developed research projects synthesizing this interdisciplinarycontent with their own interests and background. As a result, the teachers have submitted severalposters with abstracts to the 2024 ACM SIGCSE and IEEE ISEC conferences and will bedelivering grant-related lessons in their classes during the current academic year.1 Introduction and MotivationDeveloping and understanding data fluency is increasingly important given the rapid changesrelated to living, learning, and working in the knowledge society of the 21st century. Meeting thiscommitment requires well-prepared teachers with proper support, including tools and resources,and yet, professional development and teacher preparation around data fluency is spotty
modules were developed and used in classes at allundergraduate levels from introductory courses to senior capstone design and in undergraduateresearch projects such as REU and RET programs.The project successfully demonstrated that an experimental centric pedagogy combined withhands-on educational technology stimulates student interest in the STEM area, promotes contentacquisition, and problem solving, and retention. Hands-on activities were shown to be successfulacross a variety of instructional settings and EE topics. The momentum that the project has isremarkable. By the end of the project practically all the minority students at the 13 institutions(which represent over 35% of the entire population of the African-Americans in engineering inthe
industry sponsored capstone from at his school and is the advisor of OU’s FSAE team.Dr. Andrea L’Afflitto Dr. L’Afflitto is an assitant professor at the Grado Department of Industrial and Systems engineering at Virginia Tech. His research is in lightweight robotics, with special emphasis on unmanned aerial systems (UAVs) and lightweight robotic arms. Dr. L’Afflitto served as an assistant professor at the School of Aerospace and Mechanical engineering at the University of Oklahoma from 2015 to 2019. He gained his Ph.D. degree in aerospace engineering from Georgia Tech, MS in mathematics from Virginia Tech, and MS and BS in aerospace engineering from the University of Napoli, Italy.Dr. Wei Sun, University of Oklahoma
(CINQ) which are multi-year, global projects based on the desire to make a difference right from the beginning but requires significant amount of thinking and creativity; There is the Summer Mountaintop Experience Project that promotes student innovation and self- driven projects. The university has systems in place to get tracking on projects including the Capstones. This shares similarity with the nanotechnology fellows program at GW [24], [25].These programs led to the elimination of “teaching in silos,” and the assessment of success was based onfeedback from the industry on student impact. Figure 2 shows the answers to the thematic questions. [VIP] Who manages the creative •This is
. A significant aspect of the project was to create a supportnetwork for the students that incorporated existing services provided by the university andestablished new services to aid students throughout their mentored research experience. One ofthe new services was the development and delivery of starting in the second year of the grant andcontinuing through the third year. The purpose of the workshops is to introduce students todifferent aspects of research. The first series of workshops (offered in the 2021-2022 academicyear) were mostly informational and provided initial support for undergraduate researchers. Fromthe experience of developing and hosting the first series, the style of the second series (offered inthe 2022-2023 academic
workday, travel to theuniversity, attend the presentation, provide feedback to the presenter, and engage with students.While it is feasible on occasion, maintaining this regularly also poses challenges. Figure 2 – A mentee discussing his project with his peers and an industry mentorDuring the spring symposium, students highlight their projects, such as their capstone,internship, or class projects. This event also serves as a platform for students to make a positiveimpression on industry professionals, potentially leading to securing internships for theupcoming summer. The interactions during the symposium are often fantastic, but the follow-upengagement outside the event could be improved. Figure 3 – A mentor industry giving
Approach to affective, Orientation-Reflective Value Awareness Empathetic Electrical Engineering Courses [31] behavioral Being- Whole Profession Empathic approaches in engineering capstone Skill- Perspective Taking, Mode Switching cognitive, design projects: student beliefs and reported Orientation-Epistemological Openness, Reflective Value Awareness, Commitment to behavioral behavior [32] Values Pluralism Empathy and ethical becoming in biomedical
IIE, a fellow of ASME, a former Fulbright scholar and NRC Faculty Fellow. Her recent research focus includes sustainable product design and enhancing creativity in engineering design settings.Prof. Zahed Siddique, University of Oklahoma Zahed Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and
(Jerome Krivanek Distinguished Teaching Award) and state (TIP award) levels. Scott also was a co-PI for a Helios-funded Middle School Residency Program for Science and Math (for which he taught the capstone course) and is on the leadership committee for an NSF IUSE grant to transform STEM Education at USF. His research is in the areas of solution thermodynamics and environmental monitoring and modeling. American c Society for Engineering Education, 2021 Systemic Transformation of Education Through Evidence-based Reform (STEER): Results and Lessons LearnedAbstractWe report here on the implementation over five years of a comprehensive project to
# 1914869) for an associated research study. She is, and has been, principal investigator (PI) or co-PI on multiple NSF grants related to computer science and STEM education. She integrates multidisci- plinary collaborative projects in her courses, to create immersive learning experiences that deeply engage students with a diversity of perspectives and backgrounds. Students in her research lab are researching and implementing machine learning and collective intelligence algorithms, that harness the cognitive abilities of large numbers of human users to solve complex problems.Prof. Kim E. Pearson, The College of New Jersey Kim Pearson is professor of journalism at The College of New Jersey who teaches a range of courses
students on their course projects. He was given an Outstanding Advising Award by USF and has been the recipient of numerous teaching awards at the department, college, university (Jerome Krivanek Distinguished Teaching Award) and state (TIP award) levels. Scott is also a member of the executive com- mittee of a Helios-funded Middle School Residency Program for Science and Math (for which he taught the capstone course in spring 2014) and is on the planning committee for a new NSF IUSE grant to trans- form STEM Education at USF. His research is in the areas of solution thermodynamics and environmental monitoring and modeling.Dr. Sylvia W. Thomas, University of South Florida Dr. Sylvia Wilson Thomas is currently an
Paper ID #31465Outcomes and Assessment of Three Years of an REU Site in Multi-ScaleSystems BioengineeringDr. Timothy E. Allen, University of Virginia Dr. Timothy E. Allen is an Associate Professor in the Department of Biomedical Engineering at the University of Virginia. He received a B.S.E. in Biomedical Engineering at Duke University and M.S. and Ph.D. degrees in Bioengineering at the University of California, San Diego. Dr. Allen’s teaching activities include coordinating the core undergraduate teaching labs and the Capstone Design sequence in the BME department at the University of Virginia, and his research interests
], inspiresophomores and make juniors inquire in their engineering electives [37-38], and help seniorsexplore during their capstone projects [39-40]. Product archaeology represents a low cost,natural extension of product dissection and related hands-on activities that many facultymembers are already using. Its flexibility lowers barriers to entry as we heard from participantsin our product archaeology workshop [41], and they appear to exhibit the same “stickiness” [42]that product dissection does.3. Product Archaeology Implementation and AssessmentIn the most recent multi-university implementation (fall 2012 semester), three universitiesexercised product archaeology modules and teaching strategies. Various assessment tools wereused relative to the style
meaningful to students.Curriculum Overview. The SCoPE engineering curriculum engages middle school students in athree-week capstone project focusing on managing nutrient pollution in their local watershed.Students engage with the problem through local news articles and images of algae covered lakeswhich drives the investigation into the detrimental processes caused by excess nutrients fromsources such as fertilizer and wastewater entering bodies of water. Students apply ideas learnedpreviously in science class to help define the problem, which deepens their understanding of thescience content and emphasizes the role of science in solving problems with engineering. Theyresearch the sources of nutrient pollution and potential strategies for managing
. Stephen J Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with
learning effectiveness. The first step requiresrestructuring the current courses IE 4352 Digital System Simulation. The second step willinvolve the development of one new Internet based manufacturing technology course: IE/ME4395 Design for Manufacturability. The third step will involve developing one restructuredcourse ME 4390 Rapid Manufacturing Systems. These courses, of interdisciplinary nature andtheir associated hands-on laboratory experience will become capstone courses, which willinclude CBRM practice, operating on hardware, virtual facility embedded tutor systems and termprojects. Moreover, the proposed activities also include project competition in IE/ME 4395. Twostudents who perform excellent in the semester project from each department
design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely with the departmental leadership to manage the undergraduate program including: developing course offering plan, chairing the undergrad- uate curriculum committee, reviewing and approving course articulations for study abroad, serving as Chief Advisor, and representing the department at the college level meetings. She is also engaged with college recruiting and outreach; she coordinates three summer experiences for high school students visit- ing Bioengineering and co-coordinates a weeklong Bioengineering summer camp. She has worked with the
engage joint PWI-MSI teams in the US education and research enterprise. The IECis a novel collaboration among nearly 20 MSIs, most of whom participated in an NSF fundedmulti-year, engineering education project. This new organization was built on the idea that thiscollaboration can be leveraged and moved to the next level to provide higher capacity building ateach of the consortium members. The hypothesis is that there are windows of opportunity openthrough establishment of research and educational collaborations between its MSI members withPWI research-intensive institutions. This is especially true since its member institutions serve aunique population of minority students. The IEC is developing the infrastructure and programs tofacilitate
example of evolvable SDRbased laboratories for three existing undergraduate courses. In this project, we are developingnew lab components that can be adopted by multiple courses ranging from freshman yearintroductory course to senior year capstone design projects. Specifically, we have developed aSDR based general modulation/demodulation platform with a graphical user interface (GUI).This user-friendly GUI will allow students to adjust RF parameters such as carrier frequency andsymbol rate. More importantly, this general modulation/demodulation platform is capable oftransmitting many popular modulation schemes such as BPSK, QPSK, 8PSK, 16PSK, 16QAM,64QAM. Additionally, students are able to observe the transmitted signal in both time andfrequency
for 5 of the 7 engineering majors at UT. 9Summer: Team Building Project A major focus of the TranSCEnD experience is a summer program where studentsvoluntarily participate in a multidisciplinary capstone group project. The high impactcapstone project will incorporate aspects of materials science and civil, environmental,mechanical, and electrical engineering to build a solar thermal heating system or both an offgrid/grid-tied solar electric system; the projects will alternate every other year. The projectswill supplement the summer lecture coursework with a hands-on experience that will give thestudents opportunity to cement a series of
Vibrations and undergraduate level capstone design courses, thermodynamics, Measurement c American Society for Engineering Education, 2015 Paper ID #11637 Systems, Engineering Mechanics and Introduction to Engineering. One of Professor Orabi’s most recent projects involves the development of learning modules. These modules provide undergraduate engineer- ing students with improved learning of basic, conceptually-difficult engineering concepts in the context of a basic knowledge of finite element analysis.Prof. Kyle A. Watson, University of the Pacific Kyle Watson earned his B.S. in mechanical
young professionals – in herrole at Texas A&M University. She is the Director of the College of Engineering’s, Zachry LeadershipProgram and a Professor of Engineering Practice. At Texas A&M University, she has taught Capstone Se-nior Design and Foundations of Engineering courses, but now teaches Engineering Leadership Develop-ment courses. She has also taught Project Management and Risk Management courses for the Universityof Phoenix.Dr. Wickliff has been honored with University of Houston’s Distinguished Young Engineering AlumniAward, the Black Engineer of the Year Career Achievement Award for New Emerging Leaders and fea-tured in several publications. She has presented keynote addresses, facilitated workshops and given moti-vational