and nature of asset-based practices both in theory and practice, andhelped identify a variety of practical asset-based pedagogical strategies from community-inspireddesign projects and asset-mapping to translanguaging and cross-institutional faculty professionaldevelopment initiatives. We believe that these findings will potentially motivate the engineeringeducation community to actively implement asset-based approaches in design instruction, andfurther develop and test more nuanced strategies that draw upon students’ funds of knowledgeand cultural wealth.IntroductionEngineering design is typically recognized and taught as a team activity, with cornerstone andcapstone project-based courses requiring students to work on teams and to navigate
improving the qualityand throughput of undergraduate engineering programs: 1) development of interdisciplinaryundergraduate engineering curricula, 2) team-based engaged learning and research, 3) research-basedteaching practices (RBTPs), 4) collaborations between academia and industry, 5) online/distancelearning and telecommuting skills, and 6) the persistence of traditionally underrepresented students.In addition, future prospects of interdisciplinary project-based learning are discussed from threeaspects: student competency, faculty development, and industry collaboration. IntroductionThe need for highly trained and capable engineers to address increasingly complex problems that facesociety is clear
enables her to combine a deep understanding of scientific principles with the ability to tell a compelling story to communicate the scientific and potential societal impact of individual research projects. Her targeted campaigns raise the perceived stature of the organization and lead to successful institutional fundraising. After graduating from Williams College with a bachelor’s degree in chemistry and French, Thuy earned a Ph.D. in chemistry from the University of Hawaii. In her early career, she was a research scientist at Pacific Northwest National Laboratory and held management positions in several engineering firms, including CH2M HILL, Lockheed Martin, and Los Alamos Technical Associates. While pursuing her
community colleges and baccalaureate institutions in Washington State. He is passionate about helping faculty and staff support community college students in reaching their ed- ucational and career goals. c American Society for Engineering Education, 2018 The SEECRS Scholar Academy at Whatcom Community College: An S-STEM Scholarship ProgramAbstractThe STEM Excellence through Engagement in Collaboration, Research, and Scholarship(SEECRS) project at Whatcom Community College is a five-year program aiming to supportacademically talented students with demonstrated financial need in biology, chemistry, geology,computer science, engineering, and physics. This project is funded by an
predict significantjob opportunities for graduates in the Energy Engineering profession due to energy economicsand the age of the current work force in the field. Surveys of members of the Association ofEnergy Engineers show relatively large numbers nearing retirement, an anticipated growth inemployment opportunities, and overall strong career opportunities(http://www.aeecenter.org/files/reports/2015EnergyManagementJobs.pdf ).At the university level, many graduates of chemical, electrical, mechanical, and otherundergraduate engineering disciplines specialize in energy through technical electives andresearch projects. There are also specialized degree programs, although they are somewhatlimited at the undergraduate level. Penn State’s Energy
variety ofaesthetic issues in the form of practical and creative assignments. The course consists oflectures on photography skills, fluid physics, visualization techniques, critique sessions, and aguest lecture. Assignments consist of images paired with written technical reports, and self-reflection sessions to learn "effective communication" skills. Other course objectives evaluatedthrough students’ assignments and projects are "creative thinking" and "integrative thinking".Some samples of student works are presented. This course proved to be very successful inattracting all students (male and female) in both engineering and non-engineering majors.IntroductionThere has been a great interest in bridging the science and art in recent. Three
Paper ID #29000Development of Empathy in a Rehabilitation Engineering CourseDr. Lauren Anne Cooper, California Polytechnic State University, San Luis Obispo Lauren Cooper earned her Ph.D. in Mechanical Engineering with a research emphasis in Engineering Education from University of Colorado Boulder. She is currently an Assistant Professor in Mechanical Engineering at California Polytechnic State University in San Luis Obispo. Her research interests include project-based learning, student motivation, human-centered design, and the role of empathy in engineering teaching and learning.Amanda Johnston, Purdue University-Main
Paper ID #20335Design and Assessment of the Social Responsibilities of Researchers’ Gradu-ate Training Program at the University of Notre DameDr. Mark L. Bourgeois, University of Notre Dame I am a postdoctoral fellow at the Reilly Center for Science, Technology and Values at the University of Notre Dame. I have a professional background in engineering, a PhD in philosophy of science, and for many years taught ethics and design in the Engineering school at Northwestern University. My current responsibilities are for implementing the NSF-sponsored Social Responsibilities of Researchers project at ND
Standards and Technology.Dr. Peter C. Nelson, University of Illinois, Chicago Peter Nelson was appointed Dean of the University of Illinois at Chicago’s (UIC) College of Engineer- ing in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Depart- ment of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, manufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $30 million in research grants and con- tracts on issues of
experiential education in which students engage in activities thataddress human and community needs together with structured opportunities intentionallydesigned to promote student learning”.1 Evidence shows that service-learning activitiessubstantially improve student understanding and retention of quantitative concepts and technicalskills.1 Students also report that they work harder on service-type projects than conventionalassignments.2,3 Furthermore, service learning has been shown to be effective for teaching skills .such as communication, leadership, teamwork, and ethics.2,4,5 These skills are difficult to fit intotraditional class material, but gaining prominence in civil engineering educational objectives andaccreditation criteria
majors is theimplementation of support programs. Research literature on effective strategies to increasediversity in STEM fields generally describes support programs as activities crafted to helpovercome factors that deter underrepresented students' from pursuing programs in STEM areas.2NSF supported research indicates that “Students that participate more frequently in supportactivities are less likely to leave engineering than those who do not participate or participate lessfrequently.” 3Based on this hypothesis, Brigham Young University and other universities are implementingsupport programs at the undergraduate level to encourage and assist women in engineering andtechnology majors including mentoring networks, projects for freshmen, and
challenges, a review of theliterature by Houseal et al. suggests (a) considering hierarchical issues and power imbalancesbetween all parties; (b) frequent and open communication; (c) the need for all parties to be in onthe design of the activities; (d) active development of long-term commitment to the collaborationand (e) a third-party liaison to act as a facilitator to help with the interactions. Theseconsiderations were part of the design of this project as discussed in the methods section.MethodsThe participants in this study were enrolled in an elementary science methods course offered at aMid-West university taught by the first author. Participants signed a consent form approved bythe Internal Review Board, which was placed in a closed envelope
Liberia and the University of Michigan in collaboration with the Society of Women Engineers and the University of Michigan. She is also working on an engineering education research project – Towards a global network of women engineers, as part of her endeavors in Liberia.Elizabeth Frances Cloos Dreyer, University of Michigan Elizabeth Dreyer is a 4th year Electrical Engineering – Optics doctoral student at the University of Michi- gan in Ann Arbor, MI. She graduated with a Bachelor’s degree in Electrical Engineering in 2012 from Michigan Technological University in Houghton, MI. She is particularly interested in Optics & Photonics and the expanding applications of such in industry. In general, she wishes to change
Technical College Jill Davishahl is a faculty member in the engineering department at Bellingham Technical College where she teaches courses ranging from Intro to Engineering Design to Engineering Statics. Outside of teach- ing, Jill is working on the development of a Bachelor of Applied Science in Engineering Technology and is currently PI on the NSF funded ATE project grant in renewable energy as well as PI on an NSF funded S-STEM project. She holds a Master of Science in Mechanical Engineering from the University of Washington.Mr. Eric Davishahl, Whatcom Community College Eric Davishahl is faculty and engineering program coordinator at Whatcom Community College. His teaching and research interests include
c Society for Engineering Education, 2021 A Student-Centered Program to Increase STEM Interest through NASA-STEM ContentAbstractThis article is an evidence-based practice paper which is based on NASA Minority UniversityResearch and Education Project (MUREP) Aerospace Academy (AA) program implemented atFlorida Atlantic University (FAU). The program is focused on student-centered methodology forinfusion of NASA-STEM contents into the existing curriculum in middle and high schools. Thisnovel program aims to increase awareness and create interest in underserved minority students inGrades 6-12 for pursuing STEM fields. FAU has designed and embedded the NASA-STEMcontents into Florida’s existing Next
CoNECD ASEE Conference April 29-May 1, 2018Members of the CSP-Hatchery team include: • Timothy Andersen, PhD, Professor, BSU CS • Amit Jain, PhD, Associate Professor, BSU CS • Dianxiang Xu, PhD, Professor, BSU CS • Noah Salzman, PhD, Assistant Professor, Electrical Engineering & Engineering Education (IdoTeach) • Don Winiecki, EdD, PhD, Professor of Ethics & Morality in Professional Practice, College of Engineering, BSU, and Professor, Organizational Performance & Workplace Learning, [Social Scientist] • Carl Siebert, PhD, Assistant Professor, Curriculum & Instruction (Education), [Outside Evaluator]As required by NSF, the project team included experts in engineering education and
summarize and disseminate knowledge on a researcharea. Using Mays et al. definition: “[scoping studies] aim to map rapidly the key concepts underpinning a research area and the main sources and types of evidence available, and can be undertaken as stand-alone projects in their own right, especially where an area is complex or has not been reviewed comprehensively before.” [21]This methodology has demonstrated its value when investigating topics or research areaswhere evidence takes a variety of forms thereby making other knowledge synthesismethodologies, like systematic reviews, inappropriate and where a non-systematicliterature review may lack the rigor to make actionable or credible assertions [16].In
These authorsexplain that capstone design courses are commonly used to demonstrate the achievement ofprescribed engineering competencies. The development of cornerstone (or introductory) designcourses was prompted by desires to connect new students to the engineering profession in anengaging and meaningful fashion. The value of introducing design thinking and applying project-based learning is emphasized as means to acquire design skills. The Conceive-Design-Implement-Operate (CDIO) process is suggested as a means to infuse design throughout thecurriculum.Design thinking is characterized as the designer’s ability to tolerate ambiguity, addressuncertainty, iterate, maintain a systems perspective, work in a team, make decisions, andcommunicate
design teaching and learning, program content and structure, student assessment, and continuous course improvement techniques. She managed and was a key contributor to a two-year pilot project to introduce Blended Learning into Engineering Capstone De- sign Courses, and is a co-author with John M. Shaw on a number of recent journal, book, and conference contributions on engineering design education.Dr. John M. Shaw John M. Shaw obtained his B.A.Sc. degree in Chemical Engineering and his Ph.D. in Metallurgy and Ma- terial Science at the University of British Columbia, Vancouver, Canada, in 1981 and 1985 respectively. In 1985, he joined the Department of Chemical Engineering and Applied Chemistry at the University
competency development via education and training; interactions between humans and technology; and conceptualization of leadership in engineering. Supported by more than $7.5M in federal funding and with results disseminated across more than 100 refereed publications, her research aims to develop and sustain an effective engineering workforce with specific emphasis on inclusion. She has over ten years of construction and civil engineering experience working for energy companies and as a project management consultant; nearly 20 years of experience in academia; and extensive experience leading and conducting multi-institutional, workforce-related research and outreach. She holds civil engi- neering degrees (BS, MS, PhD
beginning and end of the semester. Coursebelonging and engineering identity was higher among first-generation and low-income studentsin EMath on the pre survey. Course belonging and math confidence increased on the post survey.Among students enrolled in an engineering projects course in fall 2018, at the end of thesemester students also enrolled in EMath had higher private regard and group identification (twomeasures of identity) compared to students not enrolled in EMath; the largest difference wasamong URM students. The results indicate that EMath might provide a supportive environmentwith benefits to students’ engineering identity, although confounding factors of additional cohortprograms and intersectional identities are complications to the
awareness was used as segue into a personal communication stylesinventory activity.Social Media AssignmentsFour assignments involved a deliverable produced by social media. The first two social mediaassignments in the course, Online Presence and Interview a Junior, were individual assignments.The latter two of these, the Alpine Tower Statics Laboratory Wiki and NAE Grand ChallengesVideo Project, involved teamwork and are discussed later in this section of the paper.The goal of the Online Presence Assignment was to help establish expectations for the classstructure and included five simple steps. Students were simply required to upload a picture ofself to the “Class Photos Wiki” in Blackboard, create a LinkedIn profile, create a YouTubechannel, log
experience at K&A Wireless as a research associate in Albuquerque (USA). Additionally, he has profes- sional experience at Hitachi Automotive Systems America as an Intern in Research & Development in Detroit (USA) and Senior Product Engineer at Fiat Chrysler Automobiles in Brazil. He served as the President of Student Platform for Engineering Education Development (SPEED). Before joining SPEED, Claudio served as co-founder of the Student Chapter of the Brazilian Automation Society. Among his many achievements, his project was awarded the Best Student Initiative for Engineering Students pro- moted by Cengage Learning. He received the Leadership Award by ISTEC, and the Young Scientist Award supported by
Society for Engineering Education, 2015 1 Not engineering to help but learning to (un)learn: Integrating research and teaching on epistemologies of technology design at the margins Abstract Locating engineering education projects in sites occupied by marginalizedcommunities and populations serves primarily to reinforce themisapprehension that the inhabitants of such sites are illiterate, inept,incapable and therefore in need of aid or assistance from researchers, facultyand students. Drawing on the emerging literature on engineering educationand social justice, I examine the stated objectives, content, duration, andoutcomes of exemplar projects
enhancing coastal re- silience to natural hazards. Her research has been funded by the National Science Foundation, National Park Service through FAU Environmental Sciences Everglades Fellowship Initiative, USGS, and The Na- ture Conservancy.Dr. Alka Sapat, Florida Atlantic University Alka Sapat is an associate professor of public administration at Florida Atlantic University. Her research interests include disaster and crisis management, environmental policy and justice, federalism, and social networks analysis. She was a Research Fellow with the National Science Foundation’s ”Next Generation of Hazards Researchers” program and has been involved in a number of initiatives including NSF funded projects on topics of
comparatively low retention and graduationrates.The paper is organized as follows. Section II outlines the project’s aims and goals. In section III,we present the methodology, including the outline of assessment metrics, both qualitative andquantitative; the timeline of the project; and course descriptions and the philosophy behind thedesign of the integrated curricula. The first results are provided in section IV, followed by theirdiscussion in section V, which also includes the transpired project limitations and changes that weare planning to implement for the second cohort. The conclusions are given in section VI.II. MotivationThe primary motivation behind exploring co-teaching in interdisciplinary STEM courses in thisproject is to enhance student
: Containing Design: Rethinking Design Instruction to Support Engineering Device Development for Low-Income CountriesAbstractWork-in-Progress: One of the primary benefits of a makerspace is the concentration of tools,materials, and expertise in one place [1]. Without makerspaces, design education in many low- tomiddle-income countries (LMIC) stops with a “paper” design and does not move onto a physicalprototype. More than 75% of registered makerspaces are in North America and Europe [2], andless than 4% of registered makerspaces are in Africa [3].As part of a joint project between Duke University (NC, USA) and Makerere University(Kampala, Uganda), “twin” makerspaces were built at the respective universities. At Makerere,this makerspace was a first
student experiences to assure all students have access to equitable opportunities to successfully transition to professional practice.Dr. Robin Fowler, University of Michigan Robin Fowler is a lecturer in the Program in Technical Communication at the University of Michigan. She enjoys serving as a ”communication coach” to students throughout the curriculum, and she’s especially excited to work with first year and senior students, as well as engineering project teams, as they navigate the more open-ended communication decisions involved in describing the products of open-ended design scenarios. American c Society for Engineering Education, 2021IntroductionA
theproposal. To illustrate, sometimes an idea stews for a good while in the form of an initial concepton which a team of colleagues continues to ponder and explore a direction for a particular topic andthe viability of the project. Conversations through collaborative interaction, among team members,are critical in bringing the most effective articulation of proposal pieces, and the multitude of pointsof views, from a collaborating team, enable a powerful array of avenues in building to the mostcompetitive proposal: in short, a group genius approach is far more productive than a solo centeredmodel. For example, the working group may have continual conversations, read, try things in thelab, ponder and pilot aspects of the work, etc., before even
the ways in which this identity is influenced by stu- dents’ academic relationships, events, and experiences. Dr. Groen holds B.S. and M.S. degrees in Civil Engineering from the South Dakota School of Mines & Technology.Dr. Lisa D. McNair, Virginia Tech Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Director of the Center for Research in SEAD Education at the Institute for Creativity, Arts, and Technology (ICAT). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures