Paper ID #41087Board 406: The Transformation of a Mathematics DepartmentProf. Tuncay Aktosun, The University of Texas at Arlington Dr. Aktosun is a professor of mathematics at the University of Texas at Arlington. His research area is applied mathematics and differential equations with research interests in scattering and spectral theory, inverse problems, wave propagation, and integrable evolution equations. He is involved in various mentoring and scholarship programs benefiting students. He was the GAANN Fellowship Director in his department during 2006-2022, he has been the NSF S-STEM Scholarship Director in his
attaining a four-year university education (includingtuition and fees, as well as room and board) ranged from $23,250 for in-state students to $40,550for out-of-state students in 2022, individuals, particularly those from low-income backgrounds,can face significant financial challenges and stress [4].These financial burdens may be a deterrent for students to pursue degrees seen as morechallenging, like STEM degrees, in fear of having academic setbacks and incurring additionalcosts. Therefore, a key factor in strengthening the STEM workforce is creating opportunities toenhance capacity by ensuring accessibility to STEM education for individuals across allsocioeconomic groups [2]. Funding opportunities, like the National Science Foundation’s S-STEM
Social Interdependence ModelAbstractThe Leadership Development Program (LDP) at Southern Illinois University Carbondale (SIU)is a two-year undergraduate experiential leadership development program. Since inception 15years ago, the LDP has a 100 percent post-graduation placement rate. Included in this statisticare the graduates that elect to continue their graduate studies. The Pathways to STEM Leadership(PSL), an NSF S-STEM project at SIU, provides scholarships to support STEM majors’ successin the LPD. Now in its sixth year, the PSL project examines the impact early S-STEM leadershiptraining produces on transformational technical leadership in its graduates. The LDP uses aninstructional approach framed upon Social Interdependence Theory to
(S-STEM) grant to increase engineering degree completion of low-income, high achievingundergraduate students. The project aims to increase engineering degree completion byimproving student engagement, boosting retention and academic performance, and enhancingstudent self-efficacy by providing useful programming, resources, and financial support (i.e.,scholarships). This work is part of a larger grant aimed at uncovering effective strategies tosupport low-income STEM students’ success at HBCUs. The next section will discuss thebackground of this work.Keywords: Historically black colleges/universities (HBCUs), learning environment,undergraduate, underrepresentationBackgroundA public historically black land-grant university in the southeastern
S-STEM project “HumanConnect” is aligned withthe Humanitarian Engineering Scholars (HES) program in the College of Engineering andsupports scholarships of up to 4 full years for academically talented students who demonstratefinancial need, enabling them to enter the STEM workforce or graduate school following STEMdegree completion. Our two main goals are to 1) Positively impact the retention and graduationof Engineering students with financial need and 2) Improve academic performance relative to acontrol group (selected from another scholars’ community, Green Engineering Scholars or GES).In the first year of the award (2013-14), scholarships were granted to a first cohort of 15 students(11 first year and 4 second year). In the second year
, as well as several years of electrical and mechanical engineering design experience as a practicing engineer. He received his Bachelor of Science degree in Engineering from Swarthmore College, his Master’s of Education degree from the University of Massachusetts, and a Master’s of Science in Mechanical Engineering and Doctorate in Engineering Education from Purdue University.Ms. Ann E. Delaney, Boise State University Ann Delaney is the Diversity, Equity, and Inclusion Coordinator and the SAGE Scholars Program Director in the College of Engineering at Boise State University. SAGE Scholars is an NSF-funded S-STEM scholarship program which is part of the Redshirting in Engineering Consortium. As part of this program
increase student engagement with professional development activities tohelp students develop a positive professional cybersecurity identity. S-STEM scholars, however,are selected based on academic success and prior academic engagement which may influencetheir level of participation and persistence in their degree program. Three questions arise: (1)Are there early signs that ACCESS scholars will have higher academic achievement and persistat higher rates than non-ACCESS scholars among cybersecurity students? (2) Do studentsparticipating in the ACCESS program participate in more professional development activitiesthan students in a comparison group?" and (3) What elements of the S-STEM ACCESS programdo students find most helpful in supporting their
Mission College S-STEM ATE* S-STEM HSI* Laredo College IUSE AISL HSI* ATE Miami Dade College S-STEM S-STEM* ATE* Palo Alto College IUSE S-STEM* ATE* West Hills CC S-STEM ATE* S-STEM S-STEM* Central Arizona 2 College ATE* HSI* LA Harbor College S-STEM Lee College IUSE HSI-F19 NMSU Grants ATE HSI* Phoenix College DRK12 HSI* HSI-F19 San Joaquin Delta S-STEM
AC 2011-1377: DEFINING AN EVALUATION FRAMEWORK FOR UN-DERGRADUATE RESEARCH EXPERIENCESLisa Massi, University of Central Florida Dr. Lisa Massi is the Director of Operations Analysis in the UCF College of Engineering & Computer Science. Her primary responsibilities include accreditation, assessment, and data administration. She is a Co-PI of the NSF-funded S-STEM program at UCF entitled the ”Young Entrepreneur & Scholar (YES) Scholarship Program.” Her research interests include program evaluation and predictors of career intentions.Michael Georgiopoulos, University of Central Florida Michael Georgiopoulos is a Professor in the UCF Department of Electrical Engineering and Computer Science and the PI of the
Ph.D. student in the Page 23.59.1 Department of Statistics at North Carolina State University.LaTricia Townsend c American Society for Engineering Education, 2013 A Large-scale Survey of K-12 Students about STEM: Implications for Engineering Curriculum Development and Outreach Efforts (Research to Practice)AbstractThis paper reports on the use of a new survey instrument, the S-STEM survey, as a model fordata-driven decision making both formal and informal K-12 STEM education initiatives. Currentnational policy and research findings regarding K-12 STEM
. However, when possible, questions were kept as theoriginal or only slightly modified. The nanotechnology and STEM attitudes survey was a modified version of theStudent Attitude Toward Science, Technology, Engineering, and Mathematics (S-STEM) instrument developed bythe Friday Institute at North Carolina State [16]. The S-STEM includes scales on attitudes towards mathematics,science, engineering, and technology, 21st century learning skills, and STEM career awareness. For the purposes ofthis project, the mathematics scale was removed and replaced by a nanotechnology focused scale developed duringprevious one-week camps provided for high school students. The nanotechnology scale contains nine questionswhich were modified over its early development
Paper ID #19796BridgeValley STEM Scholars ProgramMrs. Melissa Thompson P.E. P.E., BridgeValley Community and Technical College Melissa Thompson is an Associate Professor and the Outreach Coordinator at BridgeValley Community and Technical College located in South Charleston and Montgomery, West Virginia. She holds a Bachelor Degree in Civil Engineering from WVU Institute of Technology and a Masters Degree in Engineering from Marshall University. Melissa is a Registered Professional Engineer in the state of West Virginia. She is the Principal Investigator (PI) for the BridgeValley S-STEM Scholars Scholarship Program funded
to 72 upper division and graduate students. The upper division students were all non-transfer students, while the graduate students (after the first year) were both transfer students andnon-transfer students who had graduated from an upper division S-STEM grant. The programwas designed to especially encourage females and under-represented minority students to studyengineering and computer science. Over 65% (47/72) of the students were either female orminority students.The students in this program entered in four ways: through a lower-division NSF S-STEMprogram, as a new upper division applicant to this program, as a qualified graduate student whohad just graduated from this program as an undergraduate, and as a qualified graduate studentwho
Paper ID #44361Board 253: Emerge Scholars Program: Increasing Enrollment in EngineeringTechnologyMr. Garrett Powell Lee, South Florida State College Instructor of Engineering Technology at South Florida State College in Avon Park, FL ©American Society for Engineering Education, 2024 Emerge Scholars Program: Increasing Enrollment in Engineering TechnologyOverviewIn 2022, an S-STEM project, titled Emerge: Preparing Students for an Innovative Future(Emerge Scholars Program) was proposed to NSF to try to answer one of the highest nationalpriorities in STEM education, namely, to increase
Exploration to Develop an Engineering Identity in Low-Income StudentsAbstractEast Carolina University (ECU) was funded by a multi-institutional Track 3 S-STEM Grant#1930497 in January 2020. The funds from this grant have been used to recruit and support threecohorts of students at ECU and three partnering community colleges. The project is referred tointernally as the PIRATES project for Providing Inclusive Residential and Transfer EngineeringSupport. In addition to funding scholarships, the research aim of this project uses Lee andMatusovich’s Model of Co-Curricular Support for Undergraduate Engineering Students [1] tostudy best practices in co-curricular support for both students who start their pathway towards
Skills through Development of a Conceptual Business PlanAbstractAs part of the NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant the scholarship recipients at Eastern New Mexico University are required toregister for a one-credit project course. The course encourages students to hone theircommunication skills and gain knowledge in functioning effectively on a multidisciplinary team.This article presents a conceptual business plan to assist students in understanding thecomponents of effective teamwork and the importance of good communication skills. Studentsare provided with a weekly task. The first task includes choosing a company name, andproviding descriptions for: the business, product
and minorities continue to be underrepresented in engineering, both nationally and atRoger Williams University. In 2012, women constituted just 12% of engineering graduates at theuniversity, while minorities constituted just 4%. In an effort to boost the enrollment, performance,and persistence of underrepresented students, the university applied for and received an NSF S-STEM grant to integrate engineering, biology, and marine biology students into an existingprogram supporting underrepresented students on campus. The combined program, known asSTILAS, provides participants with a $10,000 NSF scholarship, supplemented by the university,as well as dedicated tutoring and advising, and co-curricular activities such as field trips and
innovative STEM educationprograms designed in part to increase student attitudes toward STEM subjects and careers. Thispaper describes how a team of researchers at The Friday Institute for Educational Innovation atNorth Carolina State University developed the Upper Elementary School and Middle/HighSchool Student Attitudes toward STEM (S-STEM) Surveys to measure those attitudes. Thesurveys each consist of four, validated constructs which use Likert-scale items to measurestudent attitudes toward science, mathematics, engineering and technology, 21st century skills.The surveys also contain a comprehensive section measuring student interest in STEM careers.The surveys have been administered to over 10,000 fourth through twelfth grade students inNorth
Engineering and Computing for Transfers (SPECTRA) program is arelatively recent NSF S-STEM site within South Carolina and expected to provide scholarshipsfor students through 2026. The program was anticipated to provide a streamlined academicpathway for transfer students from 2-year programs within South Carolina into ClemsonUniversity, and provide programming to aid their academic success and social integration. Toachieve this, the faculty intended to solidify cohorts of students at two community/technicalcolleges (Spartanburg Community College and Trident Technical College) and then support thatcohort as they transitioned together into Clemson University. To provide the students in thecohorts with a shared experience, all scholarship recipients at
national and international conferences, scientific journals, and books. Stan serves as a reviewer and a member of program committees for a number of national and international conferences. During his academic career, Stan received over seven million dollars in funding from private and federal sources. ©American Society for Engineering Education, 2023 Using Agile Principles for Cohort Building in a Graduate Software Engineering ProgramAbstractThis report describes an approach to building a cohort of students in a graduate softwareengineering program supported by the Scholarships in Science, Technology, Engineering, andMathematics (S-STEM) Program of the National
Performance Evaluation of an Ongoing Integrated Program for Recruitment, Retention, and Graduation of High- Achieving, Low-income Engineering StudentsAbstractThe present paper reports an update on an NSF-funded S-STEM program currently in its lastyear at the University of Illinois Chicago. Lessons learned during the project implementation arealso listed in the paper. A summary of the paper materials will be presented at the ASEE 2023Annual Conference and Exposition as part of the NSF Grantees Poster Session.The project's objectives are 1) enhancing students' learning by providing access to extra and co-curricular experiences, 2) creating a positive student experience through mentorship, and 3)ensuring successful student placement in
(PACE). She also manages program evaluations that provide actionable strategies to improve diversity, equity, and inclusion in STEM fields. This includes evaluation of NSF ADVANCE, S-STEM, INCLUDES, and IUSE projects, and climate studies of students, faculty, and staff. Her social science research covers many topics and has used critical race theories such as Community Cultural Wealth to describe the experiences of systemically marginalized students in engineering.Sura Alqudah (Assistant Professor) Sura Al-Qudah Holds a Ph.D. in Industrial & Systems Engineering from Binghamton University. She is a co-program director of the Manufacturing Engineering Program at Western Washington University. Dr. Al-Qudah is a Co-PI on
University. I have over 25 years of teaching and research experience and over ten years of industrial experience. c American Society for Engineering Education, 2018 Product Lifecycle Management Scholarship ProgramAcknowledgement. This material is based upon work supported by the National ScienceFoundation under Grant No. 1060160.Introduction.The Product Lifecycle Management (PLM) Scholarship Program is supported by a NationalScience Foundation Scholarships in STEM (S-STEM) grant. The goal of the S-STEM programis to provide academically sound, but financially challenged, students with the means to enroll asfull-time students at Oakland University in the fields of Industrial and Systems Engineering
TechnologyAbstractThis paper introduces two scholarship projects funded by the National Science Foundation thatfocus on students who transfer at the 3rd year level from 2-year schools to the engineering andengineering technology BS programs at our university. The objectives of both the projects are:(i) to expand and diversify the engineering/technology workforce of the future, (ii) to developlinkages and articulations with 2-year schools and their S-STEM programs, (iii) to provideincreased career opportunities and job placement rates through mandatory paid co-opexperiences, and (iv) to serve as a model for other universities to provide vertical transferstudents access to the baccalaureate degree.The Transfer Pipeline (TiPi) project awarded 25 new scholarships
Paper ID #16560ASCENT - A Program Designed to Support STEM Students through Under-graduate Research and MentoringDr. Kumer Pial Das, Lamar University Dr. Kumer Pial Das is an Associate Professor of Statistics and the Director of the Office of Undergraduate Research at Lamar University in Beaumont, TX. He is the PI of a S-STEM program funded by NSF.B. D. Daniel, Lamar UniversityDr. Stefan Andrei, Lamar University Stefan Andrei received his B.S. in Computer Science (1994) and M.S. in Computer Science (1995) from Cuza University of Iasi, Romania, and a Ph.D. in Computer Science (2000) from Hamburg University, Germany. He was
©American Society for Engineering Education, 2023 Math to Makerspace: Evolution of a bridge program to support cohort developmentIntroductionThis paper shares the evolution of a summer bridge program designed to support NationalScience Foundation S-STEM scholarship students as they transition to college. The bridgeprogram, taught before the start of the fall quarter, is a week-long intensive course designed toprovide incoming first-year students with a strong and focused start to college life. The aim is toprovide a venue to help students socially and academically integrate into the campus community.Over the course of 4 years, the summer bridge program evolved from a lecture-heavy math-focused course to a project
/ Caucasian 566 438 1004 Hispanic / Latino 84 62 146 Multiracial 44 73 117 Other 40 34 74 Total 1043 936 1979InstrumentParticipants completed the Student Attitudes toward STEM (S-STEM) survey, developed by theFriday Institute for Educational Innovation (2012), assessing attitudes toward science,technology, engineering and mathematics as well as postsecondary pathways and careerinterests. The S-STEM survey was validated and found to be reliable with this sample ofparticipants (Friday Institute for Educational Innovation, 2012, Unfried, Faber
diversity ofperspective and experience. To help all students develop the skills necessary to attract, retain,and consider the needs of diverse populations, engineering students need to consider socialresponsibility in the context of their engineering careers and scope of practice [6].To help promote engineering students’ ability to develop their social responsibility capacity, theUniversity of Massachusetts Lowell S-STEM program began with an initial plan to recruit threecohorts of 8 low-income, high-achieving students (24 students total) who wish to pursue a careerin higher education (e.g., faculty at community colleges or universities) and engage them inongoing social responsibility and identity formation curriculum. Supporting scholars from
mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering. c American Society for Engineering Education, 2016Highlights of Over a Decade of University/Community College PartnershipsAbstractIn 2002, an NSF sponsored (# 0123146) S-STEM academic scholarship program for upperdivision engineering and computer science (designated as ENGR) students materialized atArizona State University with about half of the students being transfer students. This directedattention to the need for more support for potential and actual transfer ENGR
of particular importance to the engineering transfer student population. METHOD - RESEARCH CONTEXT S-STEM GRANT: PARTNERSHIPS GOALS Enhance community college to bachelor’s degree pathways in engineering via collaborations between community colleges and universities Improve educational equity