graded for effort only, aiming atproviding formative feedback to the student prior to the tiered assignment. Additionally, eachtiered assignment was accompanied by a brief, open-ended questionnaire aiming atunderstanding how students chose problems to solve in this context. Questions included were: • Why did you choose the problems that you solved? • How do you think the level of this assignment compares to the level expected of the class, as specified in the rubrics provided? Why? • Do you think the level of difficulty of the assignments is reflected correctly in the points assigned to each problem?ResultsOur main interest in this design was in the first question: “Why did you choose the problems thatyou solved?” Here
levels of transformation that form the objectives of this project; eachlayer supports the transformations above.In this paper, we provide evidence that SIIP has not only increased the use of RBIS, but is alsosustaining their use beyond the initial financial investments in the creation of those communities.Organizational Change TheoryEducational change efforts can be categorized along two axes (See Figure 2): the intendedoutcome of the change effort (prescribed vs. emergent) and the aspect of the system to bechanged (individuals vs. environments and structures)1,3. Change efforts in engineering educationhave historically focused on changing either individuals through dissemination, facultydevelopment (i.e., developing reflective teachers), or by
more of the teaching practices introducedand 3) developing a scholarship of teaching and learning (SoTL) project based on experiences intheir revised course. The summer academy includes multiple evidence-based teaching practices(such as POGIL, Mental-Model-Building, and Project Based Learning), an introduction to SoTLand IRB processes, and time for reflection and cross-disciplinary discussion of potentialapplications of each practice into participant courses. Discussion on the progress of participantSoTL projects and classroom peer observations both within and outside participant programs arethe key components of the academic year FLC.May 2014 and academic year 2014-2015 witnessed the first offering of the SPARCT Program,which engaged 16 STEM
Page 25.1446.3and critically compare them to actual results. This approach has demonstrated success in bothphysics and engineering education. Another approach demonstrated in chemistry is ScientificConcept Construction and Reconstruction, where the emphasis is on encouraging students toapply logical scientific reasoning to repair alternate conceptions about science (She and Liao,2010). Pugh et al report that students having a deep level of engagement and transformativeexperience with the subject matter are more likely to engage in conceptual change (Pugh et al.,2010). More traditional active learning has also been shown to have a positive effect onconceptual learning in physics (Baser, 2006). Finally, in the process of reflective writing
concept of global competence aligns with the University of Dayton's (UD)institutional definition of intercultural competence. According to UD, intercultural competenceinvolves the process of listening, learning, and reflecting to develop knowledge, skills, attitudes,and commitments for engaging across diverse groups in open, effective, and socially responsibleways. The project adheres to the three student learning outcomes outlined in the UDInternational and Intercultural Leadership Certificate, focusing on students' ability to: 1. Explain how issues of social justice, power and privilege are shaped in a variety of contexts. 2. Use language and knowledge of other cultures effectively and appropriately to communicate, connect and
content was covered in isolation from the engineeringprojects with one week of equitable and inclusive STEM environment content followed by aweek of technical experiences with the project-based engineering curriculum. In each subsequentyear, the leadership team adjusted the content planning to better reflect the need for equity workto be embedded in STEM pedagogy, and not as something separate. The most consistentcomponent of the CISTEME365 professional development model was the Action Research forEquity Project (AREP). Participants designed, implemented, and then presented their findingsfrom an action research project where they investigated the impact of implementing one or moretargeted equity and inclusion strategies in their STEM Clubs or
Professional Framework (IPF) [1]. During the 2023 summer, the team also participatedin the Aspire Summer Institute (ASI), sponsored by the NSF Eddie Bernice Johnson INCLUDESAspire Alliance to start developing the content for sessions in inclusive communication. The ASIwas a week-long virtual workshop that gave the team an opportunity to retreat, reflect and act tobetter support the Project ELEVATE professional development pillar. Through the ASPIREsummer institute, the team developed the following long-term goal: “Implement inclusive professional development that equips all engineering faculty and institutional leaders with skills to implement inclusive practices and to support career advancement of faculty from AGEP populations
contested traditionalgrammatical norms to align our language with our emphasis on diversity and inclusion.Specifically, we have preferred the term “neurodiverse” over “neurodivergent” to emphasizediversity rather than deviation from a norm, despite debates over grammatical correctness. Ourlinguistic choices have evolved in response to the rising prominence of “neurodivergence” andour engagement with the peer review process, which plays a crucial role in normalizing languagewithin the academic community. Through this discussion, we aim to clarify our stance onneurodiversity language, reflecting on its implications for higher education and research.The Neurodiversity vs. Neurodivergent Dilemma: Challenging the Concept of NormalThe introduction of the
preparation includes practice with thecurriculum and Pods including troubleshooting skills necessary for non-commercial laboratoryequipment (2b and 2c in Figure 1).During the spring semester, high school projects begin with a week-long launch in high schoolclassrooms. Mentors receive logistical support to complete their monthly trips. Mentors alsoengage in weekly teaching reflections in a variety of forms [11] and receive instructor and peerfeedback (2d in Figure 1).Component 3 is focused on the adaptation and integration of the Pod platforms and is the rightbox in Figure 1. To support the implementation of high school student environmental monitoringprojects, Pods include a flexible multi-sensor package for gathering a variety of environmentaldata
metacognition and its critical role in learning. Therefore, the metacognitiveindicators also provide a path for instructors to understand metacognition better whilesimultaneously yielding valuable information about what students are doing in their attempts tolearn the content of their courses. The indicators enable conversations between instructors andstudents about learning processes where the instructors can respond and suggest specific ways ofprocessing, thinking about, or using the content to learn it better or more efficiently. Instructorsmay well find themselves reflecting on their own learning experiences – in general andspecifically within their area of expertise – which can provide powerful points of connectionwith their students.The next
’ designalternatives and matrices. Studies show that student learning improves when they are exposed tothe ideas of others, when they respond to the questions and critique of peers, when they formmore substantial justifications for their views, and when they evaluate competing ideas throughargumentation [24, 25]. Following the gallery walk student teams are given time to reflect oncritical feedback and revise their own work. Effective reflection includes keeping a record ofchanges made and justification of those changes. During stage five, prototypes of the bestdesigns – as determined through matrix scoringand argumentation in the previous stages – arebuilt and tested (Fig. 3). Importantly, this is afluid, iterative process; iterative design
context and works on the smaller componentsof it, we then experience the process of problem-solving. Climbing the mountain requires bothlinear and non-linear approaches that promote higher order thinking and critical skills. Thecomplexity of the problem encourages us to think reflectively and critically. The dynamic learningenvironment poses challenges but also opportunities for interdisciplinary collaboration.Finally, when the mountain has been climbed and we have safely returned to our base camp, weevaluate our mountain climbing experience, analyzing our successes and difficulties, and drawinglessons that can be applied to similar challenges in the future.This is the process we encouraged our research experiences for undergraduates (REU
teaching plan to incorporate what they learned into their own teaching. Atthe end of the academic year, faculty participants are tasked with completing a final reflection. Inthis paper, we will report the content of the workshops as related to the overarching goals of theISE-2 program, along with how the coffee conversation topics complemented the workshopmaterial. Lastly, we will explore the role of the teaching plans and final reflections in changinginstructional practices.IntroductionImproving Student Experiences to Increase Student Engagement (ISE-2) focuses on a facultydevelopment program designed to reduce implicit bias and increase active learning in order toincrease underrepresented minority (URM), women, and first-generation students
paperspresented at the ASEE conference.)Students viewed this use as a positive experienceii. Three in four students saw their practice withthe AD Board as relevant, reflecting course content, and reflecting real practice. Similarly, theyapproved of the opportunity to practice their content and noted that the hands-on use reflectedtheir learning needs.Table 1Student Perceptions of the Process of Use Instruction and Supplementary Materials* % Use was relevant to my academic area. 83 The AD board provided opportunities to practice content 80 The use of the AD board reflected course content 79 The use of the
contribution ADHD students can make, they often struggle in traditionaleducational environments. Mainly, how the traditional educational setting functions does notcater to how students with ADHD achieve success, nor do teachers have sufficient training andunderstanding of how ADHD affects learning and academic performance.8 In current educationsystems, students with ADHD are less engaged during instruction, display more off-task anddisruptive behavior, and are less academically motivated. There is a direct association betweenacademic achievement and attention during instruction, indicating that students with ADHD canhave more negative academic outcomes.8 This idea is reflected throughout college. Collegestudents with ADHD maintain lower GPAs
that participants would work on developing. Several guest speakers andprofessional coaches helped us during the professional and curriculum development activities.We are currently working on developing follow-up plans during the academic year where pre-service teachers will implement classroom activities under in-service teachers’ supervision andthese activities will be used during high school visits to the campus.In this paper, we will give the details about the RET Site’s management and discuss ourexperiences from lessons learned during the first year. Weekly survey results will be analyzedand interpreted. Reflections from participants, faculty, and undergraduate students will bepresented. External evaluation scheme will be introduced and
students, interviewsare central to providing the context-specific information needed for robust survey development.Therefore, we are using a quasi-longitudinal approach and we are interviewing Appalachian highschools students for a current perspective, Appalachian college students for a recent reflection,and working engineering professionals in Appalachia for a longer-term reflection. This paperfocuses on the development and pilot testing of semi-structured interview protocols for eachparticipant type.Preliminary findings from pilot testing support the protocol’s ability to provide meaningfulinformation across multiple frameworks. Initial findings from a priori coding of the frameworkconstructs suggest that influences specific to Appalachian
Logistics research projects, and begin communicating with mentors Orientation and Project Participants attend orientation workshop and prepare 1 W Definition research plans with their mentors Research and Library Literature review and library resource workshop with the 2** W Workshop Engineering Librarian Waste management and landfill design/construction 3 Continued Research S seminar with individual reflection
environment. Overall, 110 students included theenvironment in defining sustainability. Although most definitions there generalized, numerousstudents (N = 42) defined environmental sustainability more specifically in terms of resourcepreservation and management.A small minority of students reflected on the social pillar of sustainability in their responses tothis short answer question. Responses tended to be generalized such as the following: “Sustainability is the ability to sustain any device, instrument, process or an idea for a long period of time with the minimal socioeconomic costs.” (Male, Asian)Most students who mentioned the social pillar of sustainability did so in a generalized context ofsocial equitability and well
scaf-fold on prior learning and experiences, addressing a continuum of lower level to higher levelthinking and deep learning as appropriate for the curriculum. Reflection essays, class discussion,individual and group projects/products, peer review and feedback, or other types of activities willbe used to measure learner progress on the learning objectives, and to provide timely and rele-vant feedback to both the instructor and learner. This information will be used by both the in-structor and learner(s) to guide decision making and engagement in bio-inspired design. Rubricsor grading guidelines will be created for each formative assessment to ensure they align with theproject goals and learning objectives. Summative assessment will occur at
, and Mathematics (STEM) for America’s Future5 indicates the need toproduce individuals with a strong STEM background in order to be competitive internationally.Rising Above the Gathering Storm: Energizing and Employing America for a Brighter EconomicFuture6 notes that economic growth and national security are related to well-trained people inSTEM fields.STEM integration can provide students with one of the best opportunities to experience learningin real-world situations, rather than learning STEM subjects in silos7. However, the mostprevalent methods of structuring and implementing STEM education do not “reflect the naturalinterconnectedness of the four STEM components in the real world of research and technologydevelopment”1 (p. 150). This
toengage students in the practices of front-end design [4] supporting students throughout each lesson todevelop a strong understanding of stakeholder need while exploring the ill-structured, real-world issue ofwater conservation. Another central purpose of the curriculum was to help students draw connectionsbetween and leverage science, engineering, and social or community knowledge. The curriculumsupported students to explore this problem locally, understanding water conservation issues andchallenges in their own communities, to allow students to leverage funds of knowledge [12], [13] andtheir local expertise as they engaged in the process of front-end design. The summative assessment at theend of our series of lessons is an extended reflection
as staying engaged andmeeting deadlines, and changes in the overall organization of the project, such as time forreflection and clearer connections between the team activities and the learning module they werecreating. They also wished they had a better understanding of the project at the beginning.Based on what we learned during the first year of the project, we made changes to theorganization of the project to better explain its goals. We also addressed challenges about anddesires to have more opportunities for improving academic writing, gaining technicalknowledge, and reflecting on the process. Overall, we worked to support teams through the co-creation process by providing better scaffolds. The benefits of scaffolds are addressed in
Summer Observe project management Project Giving back MEP Ambassador Sophomore ABE 495 RS Summer experience reflection Advanced learning skills Outreach to PreK-12 students (Program closed after Recruitment Year Soph. Seminar Encourage society involvement 1st cohort) Building/ Strengthening Web Mentoring by
extent to which members are implementing techniques that are new to them varies, but themodel also encourages instructors to reflect on their existing teaching practices.) SIMPLE groupmembers are asked to write design memos that document their process in implementing a newstrategy. Design memos typically describe the strategy itself, why it was chosen, the type ofcourse in which it was used, if/how new activities were graded, how students responded, andlessons learned for future implementations. Design memos serve both as a means to sharestrategies and insights with other instructors and to provide a structure for reflecting on one’steaching.The group in question included a group leader, faculty member participants, and graduatestudents. The
siteprovided students with ADHD an opportunity to engage in research outside the confines of thetraditional engineering curriculum and interact with other students facing similar challenges. Thispaper presents quantitative and qualitative findings from a semi-structured interview and post-program survey of the students’ experiences. Overall, the major findings suggest that participatingin the program enhanced students’ 1) interest in engineering research, 2) interest in pursuinggraduate studies in engineering, and 3) feelings of belonging in engineering. For instance, allparticipants (N=10) responded either “agree” or “strongly agree” to statements reflecting thatattending the REU site increased their interest in research and in pursuing graduate
modules also provided students opportunities to practice new strategies for learning andself-monitoring, receive feedback, and reflect on outcomes. We focused on student self-monitoring because it is a key element of metacognition as it is instrumental in directing learningbehaviors (Zimmerman 2005; Winne, 2005). The accuracy of self-monitoring is particularlyimportant for successful learning (Schraw & Gutierres, 2014).MethodsOur overall study is a quasi-experimental study with a pre/posttest design with an intervention(Krathwohl, 2009). We did not have a control group. All students participated in theintervention and they were invited to self-select into the research.Site and Intervention DescriptionOur research site was a small engineering
projectswhile also facilitating connections across teams and providing customized academic changefaculty development curriculum.While much of the translation of research to practice literature is in the health promotion andclinical medicine fields, the findings are still relevant for organizational change research.Research indicates that some of the translation problems result because the information shareddoes not reflect an understanding of contextual factors and/or is not deemed to have externalvalidity [4]. Given that REDPAR research is focused on many types of organizations thatreceived RED grants, and the research broadly addresses themes among these contexts, we canwrite tipsheets to help other change agents understand basic propositions/themes
several promising LGBTQ-inclusive behaviors.MethodsIn spring 2017, the researchers conducted an online survey with the Leadership Community inorder to measure and document progress, satisfaction and outcomes for the VCP community.The members of the VCP were asked to provide examples of ways in which the VCP andadvocacy activities have made a difference - personally, to students, to colleagues, to theirdepartment, or to the profession. The results reflect the perceptions of the members of aCommunity of Practice after one and a half years of development and will provide an indicationof the strength of the foundation of a sustainable community of practice capable of achievingindividual and community goals.The survey was sent to 20 active members of
, resulted in astatewide survey for distribution at all coalition campuses in Fall 2019.Significant issues with deployment of the survey resulted in response rate that was below ouracceptable threshold for inferential statistical analysis, both for overall number of completeresponses (n = 542) and for distribution of responses along demographic characteristics such asinstitutional affiliation, major, and racial/ethnic identity. Descriptive analysis of relevant variablesfrom the survey supports that the themes identified in the focus groups are all reflected in thesurvey responses. The survey will be re-administered in Fall 2020 with new distributionguidelines to obtain the desired response rate.Although we cannot quantify the extent to which the