laboratories. ©American Society for Engineering Education, 2024 Teaching Computer Architecture using VHDL Simulation and FPGA PrototypingAbstractAn Instructional Processor design example has been expanded to facilitate teaching of aComputer Architecture course. The system is modelled in VHDL and simulated using Xilinxdesign tools to demonstrate operation of the processor. A basic microcontroller is created byadding memory-mapped input/output (I/O). The system is implemented in hardware on a fieldprogrammable gate array (FPGA). The processor can then be interfaced with peripheral devicesto demonstrate functional applications.A key component of the Computer Architecture course is a student
Paper ID #41414QCTaaS (Quality Cloud Teaching as a Service): An Immersive Frameworkfor Teaching Cloud Computing for Cybersecurity MajorsDr. Mahmoud K Quweider, The University of Texas Rio Grande Valley M K Quweider is a Professor of Computer and Cybersecurity Sciences at the U. of Texas at UTRGV. He received his Ph.D. in Engineering Science (Multimedia and Imaging Specialty) and B.S. In Electrical Engineering, M.S. in Applied Mathematics, M.S. in Engineering Science, and M.S. in Biomedical Engineering all from the University of Toledo, Ohio. He also holds a Bachelor/Master of English and a Master of Business Administration
Paper ID #38138Portable Laboratory for Electrical Engineering Education: The LAB-VEEEcosystem Developed in Latin America and the CaribbeanIng. Reymi Then, Universidad Tecnol´ gica de Santiago o A young professional passionate about research, technologies and their teaching. From a very early age, he presented a high interest and understanding of engineering, starting studies and technical work in electronics in 2002. In 2004 he began to study electronic engineering at the Technological University of Santiago (UTESA) and in 2019 he coursed a master’s degree in Mathematics at his Alma Mater
Paper ID #41043ThermoVR: Using Virtual Reality and Playful Simulation to Teach and AssessIntroductory Thermodynamics ConceptsDavid J Gagnon, Field Day Lab @ UW-Madison David J. Gagnon is the research director of Field Day Laboratory at the University of Wisconsin - Madison. Field Day produces and researches educational video games that have won numerous awards (Serious Play, Meaningful Play, Public Media Awards,ASEE, and others) and are used by over a million students yearly in grades 4-20, across a diversity of subjects, from engineering to underwater archeology. Field Day is the organization behind Open Game Data, a
technologies, and process improvement. He contributed to research directed to improve design and engineering education.Ahmed Sammoud, Pennsylvania State University, Behrend College Ahmed Sammoud is a Computer Science and Software Engineering faculty at Pennsylvania State University, The Behrend College. Ahmed is an avid computer scientist and engineer interested in reconfigurable computing, operating systems, video processing, Machine Learning, and Real-Time systems. ©American Society for Engineering Education, 2024Constructing Reconfigurable and Affordable Robotic Arm Platform to Teach AutomationAbstractSince its announcement in 2011, the concepts of Industry 4.0 (I4.0) have
Paper ID #42183WIP: AI-based Sentiment Analysis and Grader EnhancementsMr. Bobby F Hodgkinson, University of Colorado Boulder Bobby Hodgkinson is an Associate Teaching Professor in the Smead Aerospace Engineering Sciences Department (AES) and co-manages the educational electronics and instrumentation shop. He assists students and researchers in the department for sensor and data acquisition needs as well as manages several lab courses and experiments. He is a member of the Professional Advisory Board for the senior capstone projects course. Prior to joining Smead Aerospace department in 2012, he was the lab manager at
graded exam, the students were given a laboratory assignment inwhich they interacted with ChatGPT-3.5 to obtain feedback on their MATLAB exam. Qualitativedata on the students’ experiences with the use of ChatGPT as a tool in studying were collectedand analyzed. The results revealed that while students found the capabilities of ChatGPTintriguing, they remained skeptical in the output and reasoning given in regard to their MATLABassignment.1 IntroductionIn November of 2022, OpenAI introduced ChatGPT, a natural language processing model, to theworld. Two months later, it gained 100 million users, making it the fastest growing consumer appin history [1]. The name stems from the model’s dependence on the Generative Pre-trainedTransformer (GPT
, and as a result, experienced significant hurdles with the remote learning switch. In this paper, the impact of an internally developed smartphone application called KarmaCollab is evaluated alongside the incorporation of socialized teaching and course gamification. We will look at UC Davis Electrical and Computer Engineering laboratory courses and the impact KarmaCollab had on the online course format. The relationships between course grades, KarmaCollab app engagement, student self-reported sentiment via an end-of-quarter survey, and teaching staff interviews are presented to showcase interesting remote learning insights. Introduction The COVID-19
work in this area andconcludes the paper.2. BackgroundIn the latter part of 1995, Old Dominion University's Department of Physics started adopting amore uniform method for teaching undergraduate laboratory courses. Following this change, in1996, the department released the first edition of a comprehensive laboratory manual forundergraduates. This marked a significant shift in the instructional methodology forundergraduate physics at ODU. The development of virtual laboratories is set to enhance thisteaching approach further. With the integration of pre-arranged educational materials, includingvirtual labs, educators will be able to adhere to uniform teaching standards. This uniformity willensure that students receive a consistent and coherent
thetopic being discussed that week. For example, if a student is learning about loops in lecture, theycould be asked to write a program using loops to generate a multiplication table during the labperiod. Hazzan et al assert this allows students to be engaged in their learning rather than abystander similar to what you might see in laboratories for the natural sciences [2].Prior engineering education research has clearly shown that inductive teaching styles in lecturesand lab sessions show the students the importance and application of the subject matter byshowing the students particular examples while challenging them to keep building concept byconcept to solve complex challenges [3] [4]. These inductive teaching methods typically use ascaffolded
Paper ID #39142Assessment of the Utilization of Open Educational Resources during andafter the PandemicDr. Janardhanan Gangathulasi, National Institute of Technical Teachers Training and Research, Chennai,India Dr. Janardhanan Gangathulasi is Professor of Civil and Environmental Engineering and Head of Centre for Academic Studies and Research at the National Institute of Technical Teachers Training and Research Chennai. Dr. Janardhanan has over 20 years of research, teaching and consulting experience within the broad fields of civil, environmental engineering and engineering education. His research expertise includes
and Y. C. Cheng, "Teaching Object-Oriented Programming Laboratory With Computer Game Programming," IEEE Transactions on Education, vol. 50, no. 3, pp. 197- 203, 2007.[6] python.org, "turtle — Turtle graphics," [Online]. Available: https://docs.python.org/3/library/turtle.html. [Accessed 30 December 2022].[7] E. Engheim, "Why Should You Program with Julia?," Manning Free Content Center, 6 May 2022. [Online]. Available: https://freecontent.manning.com/why-should-you-program-with- julia/. [Accessed 30 December 2022].[8] Apache Maven Project, "Introduction," Apache Maven Project, 1 January 2023. [Online]. Available: https://maven.apache.org/what-is-maven.html. [Accessed 1 January 2023].[9] M. Kimberlin, "Reducing Boilerplate
], which introducessome active programming teaching methods. Portela employed four approaches to develop theinstructional plan, namely: BYOD, flipped classroom, gamification, and using the skills ofindividual students to solve posed problems. Tewolde presented a method for improving studentmotivation in a microcontroller-based embedded systems course to enhance students’ role inactive learning [10]. The method consists of three tools, namely: laboratory assignments forpractical hands-on activities, “peer teaching” techniques, and self-proposal, which enablesindividual creativity. For some complex and difficult to understand courses such as programmingalgorithms-related subjects, Garcia et al. [11] proposed a method in the form of
thecapability for explaining complex concepts or subjects, creation of code, fixing errors in existingcode, mathematical problem solving, the ideation and planning of laboratory experiences, amongothers [6]. On the other hand, the importance in engineering of creativity, critical thinking, andthe ability to solve complex problems, presents an opportunity to maximize the potential of thistool and explore new ways to use it.Impact on Assignments The emergence of ChatGPT introduces several profound implications for engineeringeducation, reshaping traditional teaching methods and prompting a reevaluation of assessmentstrategies. Traditional assignments that have always been done in engineering education, such asstandardized tests and multi-answer
computational thinking skills. Another line of research was the development of a simulated operating system, SimpleOS, that allowed students to run basic programs and visually see the state of the simulated memory, registers, and process queues in order to facilitate student learning. Dr. Hoskey has also collaborated with the Farmingdale State College Center for Applied Mathematics and Brookhaven National Laboratory on an undergraduate research program in the area of Signal Analysis. Dr. Hoskey received the 2017 Chancellor’s Award for Excellence in Teaching from the State University of New York.Dr. Ilknur Aydin, Farmingdale State College, SUNY, New York Ilknur Aydin is an Associate Professor of Computer Systems at
Laboratories,Los Alamos National Laboratory and the Mozilla Foundation.REFERENCES [1] Forcael, E., Glagola, C., and González, V. (2012). ”Incorporation of Computer Simulations into Teaching Linear Scheduling Techniques.” J. Prof. Issues Eng. Educ. Pract., 138(1), 21–30 [2] Adams, W.K., Reid, S., LeMaster, R., McKagan, S.B., Perkins, K.K., Dubson, M., and Wieman. C.E. (2008a). A study of educational simulations part I—Engagement and learning. Journal of Interactive Learning Research, 19(3), 397-419.[3] Adams, W.K., Reid, S., LeMaster, R., McKagan, S.B., Perkins, K.K., Dubson, M., and Wieman, C.E. (2008b). A study of educational simulations part II—Interface design. Journal of Interactive Learning
Paper ID #37174A Comparison of Students’ Academic Achievement and Perceptions in Hyflexand Non-Hyflex Engineering CoursesDr. Jessica Ohanian Perez, California State Polytechnic University, Pomona Jessica Ohanian Perez is an assistant professor in Electromechanical Engineering Technology at Califor- nia State Polytechnic University, Pomona with a focus on STEM pedagogy. Jessica earned her doctorate in education, teaching, learning and culture from Claremont Graduate UniversityProf. Juliana Lynn Fuqua, California State Polytechnic University, Pomona Juliana Fuqua, Ph.D., is an Associate Professor in the Department of Psychology
partially flipped ECE laboratory classes,” in ASEE Annual Conference and Exposition, Conference Proceedings, 2020, vol. 2020-June.[9] A. Dallal, “Students performance in remote flipped signals classes,” in ASEE Annual Conference & Exposition, 2021.[10] B. Morin, K. M. Kecskemety, K. A. Harper, and P. A. Clingan, “The inverted classroom in a first-year engineering course,” in the 120th American Society of Engineering Education Annual Conference & Exposition, Atlanta, GA, 2013.[11] F. Reyneke and L. Fletcher, “The impact of an inverted traditional teaching model on first level statistics students,” in Ninth International Conference on Teaching Statistics, 2014.[12] C. P. Talley, “The Enhanced Flipped Classroom
, Qatar Dr. Al-Hamidi holds a Ph. D. degree in Mechatronics from the University of Bourgogne Franche-Comt´ e (UBFC), France, and currently working as the Mechanical Engineering Laboratories Manager at Texas A&M University at Qatar. He joined Texas A&M University at Qatar in 2007 coming from University of Sharjah. Dr. Al-Hamidi had been appointed as a visiting lecturer in 2018 to teach design related courses in the mechanical engineering program. He specializes in product design, instrumentation, controls, and automation. Dr. Al-Hamidi founded the Engineering Enrichment Program in 2016, which is currently one of the Center for Teaching and Learning pillars. He received three Transformative Engineering
process- ing. He is a co-inventor on 3 US patents related to control systems. Dr. McLauchlan is a member of ASEE and was the 2012-2014 Chair of the Ocean and Marine Engineering Division. He is also a member of IEEE (senior member), SPIE, Eta Kappa Nu, ACES and Tau Beta Pi, and has served on the IEEE Corpus Christi Section Board in various capacities such as Chair, Vice Chair, Secretary and Membership Develop- ment Officer. Dr. McLauchlan has received the Dean’s Distinguished Service Award twice and the Dean’s Outstanding Teaching Award once for the College of Engineering at Texas A&M University-Kingsville.Dr. David Hicks, Texas A&M University, Kingsville David Hicks is an Associate Professor in the Electrical
learning and robotics together withthe specific machine learning and robotics applications in autonomous systems, the first author hasexplored the Machine Learning Course and Robotics Course currently available in differentUniversities [1-7]. Especially, during her 8 weeks summer visiting at Stanford University, shealso had a chance to explore resources to integrate into the course. Based upon all these works, shesuccessfully adapted/developed course EGR 391- Intermediate Research Topic Course to aResearch-based Course on Machine Learning and Robotics by combining teaching, research,and engagement. This course is especially designed for the team of junior undergraduate studentswho are participating in the NSF EIR and NASA ULI projects.The
Paper ID #43691(Board 53/Work in Progress) Engaging the Next-Generation of IC Designerswith Puzzle-Solving CompetitionsProf. Daniel Limbrick, North Carolina A&T State University Dr. Daniel Limbrick is an associate professor in the Electrical and Computer Engineering Department at North Carolina Agricultural and Technical State University (NC A&T). As director of the Automated Design for Emerging Process Technologies (ADEPT) laboratory, Dr. Limbrick investigates ways to make microprocessors more reliable and secure through cross-layer design.Laura Marcela Garcia SuarezDeriech Cummings II, North Carolina A&T State
, and Relational Algebra and SQL. MarkUs is aplatform that allows students to submit their code for feedback, testing, and grading. However, asignificant drawback of both these solutions is that there is no way for course staff to monitor thetime spent by students on their programming labs. This lack of monitoring allows students toallocate excessive time towards programming labs, adversely impacting their other coursework.To address this challenge, Lab Container offers a comprehensive platform for creating andcompleting programming labs while simultaneously enabling course staff to track studentprogress and time spent on labs to prevent over-investment of time in programming labs.A Better Learning and Teaching ExperienceTo create a better
mobile learning," Journal of E-Learning & Knowledge Society, Article vol. 18, no. 3, pp. 166-177, 2022, doi: 10.20368/1971-8829/1135622.[11] B. Marks and J. Thomas, "Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory," Education and information technologies, vol. 27, no. 1, pp. 1287-1305, 2022 2022, doi: doi:10.1007/s10639- 021-10653-6.[12] N. N. Kuzmina, E. G. Korotkova, and S. M. Kolova, "Implementing E-Learning in the System of Engineering Students Training," ed: IEEE, 2021, pp. 818-823.[13] K. Cook-Chennault and I. Villanueva, Exploring perspectives and experiences of diverse learners' acceptance of online
Stevens Institute of Technology. My research at Stevens is on robotics and virtual reality used in engineering education. My master’s degree was in Electrical Engineering, obtained from Southeast University. I received my bachelor’s degree in Mechanical Engineering at Southwest Jiaotong University. I have over 7-years of industrial experience as an electrical engineer and mechanical engineer. I also have extensive teaching experience with respect to various interdisciplinary courses involving Mechanical Engineering, Electrical Engineering, and Computer Science. ©American Society for Engineering Education, 2024 2024 ASEE Annual Conference and Exposition
Edition, Brigham Young University Press, 1995.6. L. E. Ortiz and E. M. Bachofen, “An Experience in Teaching Structures in Aeronautical, Mechanical and Civil Engineering, Applying the Experimental Methodology,” 2001 American Society for Engineering Education Annual Conference & Exposition Proceedings, Session 2526.7. M. Abdulwahed and Z. K. Nagy, Applying Kolb’s Experiential Learning Cycle for Laboratory Education, Journal of Engineering Education, July 2009, pp. 283-294.8. D. A. Wyrick and L. Hilsen, “Using Kolb’s Cycle to Round out Learning,” 2002 American Society for Engineering Education Annual Conference and Exposition Proceedings, Montreal, Canada, June 17-19, 2002. Session 2739.9. T. S. Harding, H.-Y. Lai, B. L. Tuttle, and
Paper ID #44160Revolutionizing Engineering Education: The Impact of AI Tools on StudentLearningDr. Sofia M Vidalis, Pennsylvania State University Sofia Vidalis is an associate professor in the Department of Civil Engineering/Structural Design and Construction Engineering Technology at Penn State Harrisburg. She received her Ph.D., Masters, and Bachelors in Civil Engineering from the University of Florida.Dr. Rajarajan Subramanian, Pennsylvania State University Rajarajan Subramanian is currently serving as an Associate Teaching Professor of Civil Engineering and Construction (SDCET) programs at Pennsylvania State
considered the next stepforward to providing personalized, inclusive and accurate responses that address each student’squestions in an engaging and efficient manner. This information could pertain to course materialsand helping as a course tutor [5] or providing insight on university-specific knowledge, rangingfrom administrative procedures and scholarship opportunities to faculty research areas and campuslife insights.Institutional Support and Other NeedsThis project was initiated by the Department Head of Computer Science & Engineering, who wasworking with faculty in his home department and in the School of Chemical Engineering. TheirPredictive Analytics and Technology Integration Laboratory (PATENT) aims to accelerateadvances in several
defensive and analytic technology in mobile computing anddigital forensics1 . The ReScuE framework is highly scalable, and its labs cover different secu-rity and privacy facets of pervasive computing, which makes it versatile for various educationalpurposes. Between 2017 and 2022, we performed pilot studies, formal assessments, and contin-uous refinement at two institutions. The assessment results show that the ReScuE labs achievea high satisfaction rate and positive learning experiences regardless of students’ ethnic and aca-demic backgrounds. Similar results were observed even during the COVID-19 pandemic when wetransitioned to online teaching and learning.2 Related WorkThe rise of virtualization and cloud computing has enabled
taught in thissequence is basic programming.The programming instruction presented in ENGR 111 is an extension of the programming skillslearned in ENGR 110. However, ENGR 110 teaches programming basics in Python, whereas theENGR 111 instruction utilizes Arduino microcontrollers for its programming curriculum. Theprogramming instruction in ENGR 111 also forgoes standalone programming assignments forscaffolded modules that prepare students for an end-of-semester Cornerstone Project.Accordingly, students gain exposure to varying programming languages, and a wide introductionto software design concepts that help prepare them for the remainder of their academic andprofessional careers.In this paper, two semesters of ENGR 111 with two different