program's expansion and sustained impact.References[1] Maltby, J. L. , Brooks, C. , Horton, M. , & Morgan, H. (2016). Long Term Benefits forWomen in a Science, Technology, Engineering, and Mathematics Living-Learning Community.Learning Communities Research and Practice, 4(1), Article 2. Available at:http://washingtoncenter.evergreen.edu/lcrpjournal/vol4/iss1/2[2] Thomasian, J. (2012). The Role of Informal Science in the State Education Agenda. IssueBrief. NGA Center for Best Practices.[3] Ackerman, P.L., Kanfer, R., & Calderwood, C. (2013). High school advanced placement andstudent performance in college; STEM majors, non-STEM majors, and gender differences.Teachers College Record, 115(10), 1-43.[4] Shaw, E.J. & Barbuti, S. (2010
Pennsylvania State University, Pennsylvania, 2010.[9] Chien, Yu-Hung, Chia-Yu Liu, Shaio-Chung Chan, and Yu-Shan Chang, "Engineering Design Learning for High school and College First-year Students in a STEM Battlebot Design Project," International Journal of STEM Education, vol. 10, no. 1, pp. 1-15, 2023.[10] Tenenbaum, Laura S., Margery K. Anderson, Swati B. Ramadorai, and Debra L. Yourick., "High school students' experience with near-peer mentorship and laboratory-based learning: In their own words," Journal of STEM Education: Innovations and Research, vol. 18, 2017.[11] Price, M., Kallam, M., & Love, J., "The learning styles of Native American students and implications for classroom practice," In Eighth Native American
within and across school districts. PD sessions includedtime for teachers to develop lesson plans, explore resources, and reflect on their learning.We used a mixed methods research design to investigate the impact of the PD program onteacher self-efficacy and classroom pedagogy with a focus on cultural relevance and engineeringdesign. Quantitative pre/post data was collected using three survey instruments: TeachingEngineering Self-Efficacy Scale (TESS), Culturally Responsive Teaching Self-Efficacy Scale(CRTSE), and Culturally Congruent Instruction Survey (CCIS). Qualitative data includedvideotaped classroom observations, individual teacher interviews after each design task, andteacher focus groups and written reflections during the summer and
knowledge necessary to apply BID to their design solutions. Thus, this research isnecessary to explore students’ BID ideation and their perception of BID as a result of theirengagement in the BID-integrated EDP.Research Purpose & QuestionsThis study explored students' engagement in and perception of biologically inspired design(BID) during participation in a seven-week BID engineering curriculum. The research questionsaddressed in this work are: 1) How do high school students engage in ideation during a bio-inspired engineering design challenge? 2) What impact does engaging in BID have on students’perception of its value for engineering design?MethodsResearch DesignA mixed method convergent parallel design (QUAL→quant) was employed to address
Paper ID #37445Evaluating a High School Engineering Community of Practice: ThePerspective of University Liaisons (Evaluation)Dr. Sabina Anne Schill, Florida International University Dr. Sabina Schill is a postdoctoral scholar at Florida International University working with Dr. Bruk Berhane on Engineering For US All (e4usa), a high school curriculum that aims to democratize engineer- ing. Sabina received her BS in Physics from Westminster College in Salt Lake City, UT, and her PhD in Environmental Engineering from the University of Colorado Boulder. Sabina has research interests in the areas of K-12 engineering education
provided and ways to implement themsustainability and consistently in the classroom during a school year. After spending countless hours researching, discussing, attending fellowships,and professional developments looking for an answer to what diversity, equity, inclusion,and belonging looked like in a high school science classroom, I found the answers weremainly theoretical. This paper sets out to describe the process by which I used thesetheories to distill a practical, strategy-based, actionable framework for secondaryscience teachers to use with concrete steps to support their classrooms in becomingspaces that support DEIB.Framework The framework I’ve developed contains 5 elements: intentional grouping,student-driven labs, project
Paper ID #43909Methodologies for Evaluating the Impact of STEM Outreach on HistoricallyMarginalized Groups in Engineering: a Systematic Literature Review (Other,Diversity)Jessica Nhu Tran, University of British Columbia Jessica Tran is an oncoming graduate student pursing a master’s degree in engineering education at the University of British Columbia (UBC). They are interested in exploring justice-oriented pedagogies and praxis, decolonization, and EDI (equity, diversity, and inclusion) within engineering education spaces, particularly within K-12 STEM outreach.Jessica Wolf, University of British Columbia Jessica Wolf is a
Computer Engineering. Her research focus is developing pedagogical practices in STEM education specific to African Americans to increase their participation, interest, engagement, and comprehension of STEM concepts. Additionally, she specializes in the design and implementation of pre-college engineering programs targeting African Americans. Dr. Bailey is the co-founder and President of EdAnime Productions, a company that creates educational programs that teach children about the history and culture of Continental and Diasporan Africans (Meltrek), use STEAM to build character, confidence, and capabilities (Conscious Ingenuity) and focus on manhood development in teenage boys (Asafo Training Camp).Dr. Michel A. Kornegay
, teachers must firstlearn to think in new ways about the students, content, and the teaching and learning process[23], [24], [25]. Teachers' beliefs about whether they have the knowledge, skills, and resourcesfor students to implement design challenges successfully are essential to the success of theengineering design curriculum [31].Pedagogical Content Knowledge (PCK)Teachers’ PCK also impacts teacher practices in the classroom. PCK emphasizes three aspects:content, pedagogy, and students. It involves a focus on a specific subject matter concerningstudent learning, curriculum, and effective strategies to employ for teaching [25]. Shulman [24]defined PCK as the “blending of content (CK) and pedagogy (PK) into an understanding of howparticular
opportunities to link CT and CS more closely tomathematics, engineering and science [9, 10], given the shared learning processes and contextsacross the fields. It also recognizes that interdisciplinary education can benefit student learningand is often the core at K-5 learning [11], how integration occurs and how impactful it can be onstudent learning still remains unexplored. Our research question for this study was: What doesexisting literature indicate as promising practices when integrating CS into other subjects?To answer this question, we conducted a systematic literature review using the Khan et al.methodology. Systematic literature reviews for integrating CS have also been conducted. Forexample, Rich et al. conducted a literature review in
Learn., vol. 7, no. 2, Sep. 2013, doi: 10.7771/1541-5015.1339.[6] T. J. Moore, S. S. Guzey, and A. W. Glancy, “The EngrTEAMS Project: STEM Integration Curricula for Grades 4-8 (Curriculum Exchange),” presented at the 2014 ASEE Annual Conference & Exposition, Jun. 2014, p. 24.1212.1-24.1212.2. Accessed: Feb. 11, 2023. [Online]. Available: https://peer.asee.org/the-engrteams-project-stem-integration-curricula- for-grades-4-8-curriculum-exchange[7] A. Hira and M. M. Hynes, “Design-based research to broaden participation in pre-college engineering: research and practice of an interest-based engineering challenges framework,” Eur. J. Eng. Educ., vol. 44, no. 1–2, pp. 103–122, Mar. 2019, doi: 10.1080
, courses tailored to enhancing pedagogical skills in such areasbecome valuable. As such, teacher professional development programs and courses that focus onteaching engineering with real-world problems emerge as catalysts for transformative teachingpractices. In the context of this study, we delve into a 3-hour graduate course entitledNanoEnvironmental Engineering for Teachers (NEET) offered free of cost at Rice University,Arizona State University, Yale University, and the University of Texas at El Paso under theNanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment(NEWT). The NEET class is designed for AP Environmental Science, Environmental Systems,Biology or Life Sciences, and K-12 STEM teachers to learn about water
at the University of Florida. Her interests are polymer chemistry, additive manufacturing, and data analytics.Katherine Miller, University of Florida Katherine Miller is a graduate of the University of Florida with a Bachelor’s of Science in Materials Science and Engineering. She is a content and format reviewer for EQuIPD Data Science and AI curriculum. Her other research is in biomaterials, focusing on naturally derived hydrogels under Dr. Josephine Allen at the University of Florida. Her interests are additive manufacturing, STEM education, and remote sensing of hazardous materials. ©American Society for Engineering Education, 2024 Developing an AI and Engineering Design
Engineering at Penn State. Their work focuses on grid-interactive building controls. They are passionate about undergraduate engineering education and research.Baraa J. AlkhatatbehLorine Awuor Ouma ©American Society for Engineering Education, 2023 Energizing High School Students Towards Building Design: A Summer Camp Experience Architectural Engineering (AE) is a critical engineering major for the future of building designgiven how important buildings impact our everyday lives as well as our environment. However, the majorof AE is comparatively small and relatively unknown as compared to other majors like civil engineeringand mechanical engineering. It has been shown in the pre-college literature that the
an emphasis on broad integratedtransdisciplinary knowledge.Furthermore, this paper describes an experiential college preparatory program for high schoolseniors embedded in an engineering company and reports the outcomes of a longitudinal studyover four and half years. The study gathered feedback from three secondary graduate cohorts onwhat knowledge content and learning practices in their secondary program were most helpful intheir success at the postsecondary level. Forty-eight secondary students entered the program,with forty-two completing it. The study also discusses the impact of low student-to-teacher ratiosand teacher experiences in transforming experiential knowledge into acquirable studentknowledge.The research offers insights on
Transactions on Education and Editorial Board Member for the Journal of Research and Practice in Technology Enhanced Learning. He is also the upcoming Program Chair-Elect of the PCEE Division at ASEE. His current research interests include STEM+C education, specifically artificial intelligence literacy, computational thinking, and engineering.Xue Jia Xie, Singapore University of Technology and Design Xue Jia Xie (Clairea), a senior research assistant at the Singapore University of Technology and Design (SUTD), is actively involved in Dr. Yeter’s Research Team, where she concentrates on STEM+C educational projects, engineering education, AI education, and computational thinking. Her work is pivotal in exploring how
within chemically modified, biomimetic hydrogels and was awarded the Distinguished Master’s Thesis Award by the university’s graduate office for her work. After graduating, she continued her research in a tissue engineering/ biomaterials laboratory until accepting a teaching position at Marian University where she currently teaches Physics I, Physics II, Biophysics, and will soon be developing courses related to biomaterials. In addition to teaching, Tanja also plays a large role in the community outreach of the E.S. WSOE through directing events such as the Central Indi- ana Regional Science and Engineering Fair and the annual INnovation Through Engineering Residential Summer Camp. Through her efforts, Ms. Greene
Figard is a graduate student in Engineering Education and Systems Design and Universal Experi- ence (UX) Design at Arizona State University.Dr. Kenneth Reid, University of Indianapolis Kenneth Reid is the Associate Dean and Director of Engineering at the R. B. Annis School of Engineering at the University of Indianapolis. He and his coauthors were awarded the Wickenden award (Journal of Engineering Education, 2014) and Best Paper award, Educational Research and Methods Division (ASEE, 2014). He was awarded an IEEE-USA Professional Achievement Award (2013) for designing the B.S. degree in Engineering Education. He is a co-PI on the ”Engineering for Us All” (e4usa) project to develop a high school engineering course
had completed comprehensive safety training experiences were 49% lesslikely to have had an accident occur in their courses [5]. However, of greater concern are thebroader impacts of safety deficiencies modeled for students in P-12 since research suggests thatstudents often implement these safety habits in post-secondary programs and the workplace.Utilizing data from a national safety research project involving 718 P-12 educators from 42states in the U.S. [3], this study examined results from a subsample of 381 educators whospecifically reported teaching pre-engineering or engineering design (PE/ED) focused courses.The goals of this study were to examine how PE/ED courses differed in terms of accidentoccurrences in comparison to other P-12
intersection of engineering education, faculty development, and complex systems design. Alexandra completed her graduate degrees in Aerospace Engineering from Georgia Tech (PhD) and Systems Engineering from the University of Virginia (UVa). ©American Society for Engineering Education, 2024 Preliminary Design of an Engineering Case Study for Elementary Students (Work in Progress)AbstractThe dominant stories about engineering in the media illustrate a field with a chronic shortage ofengineers and where “doing engineering” is about math, science, and building. Recent literaturereviews examining engineering practice and engineering careers provide a broader picture ofwhat engineers do
expose the students to the tech-nical topics in AI. We teach technical topics in deep learning using applied research projects toreal-world healthcare datasets (such as tumor growth, cancer, and more). Other than teachingtechnical skills, the program was also aimed to enable students to produce novel contributions tothe domain of diagnostic artificial intelligence. The program required students to present their re-search projects in a capstone seminar and submit a research report similar to a conference paper.To accomplish these goals, discussions on research practices and academic communication wereincluded in the course design, facilitated by a dedicated communication TA for these aspects.The 5E approach used in course: The 5Es approach [24
increasing efforts thatsupport the recruitment and success of students in STEM [2-9]. Furthermore, many universitieshave implemented a variety of programs that employ high impact retention approaches,including advising, mentoring, active learning, student engagement, and other support services.[10-14]. While there are many causes that result in low graduation rates, it is more likely thatrates could be improved if students are well-prepared for college and have clear future careergoals. Studies have shown, for example, that K-12 students who participate in STEM programsincrease their chances to succeed in STEM disciplines once they are in college. Such programsprovide participants with important knowledge and skills and help them gain a
StaffDevelopment Council. 2009.[4] L.M. Desimone, Improving impact studies of teachers’ professional development:Toward better conceptualizations and measures. Educational Researcher, 38(3), 2009, pp.181–199.[5] L.B. Easton, (Ed.) Powerful Designs for Professional Learning. Oxford, OH. National StaffDevelopment Council. 2008.[6] S. Krause, J. Kelly, J. Corkins, A. Tasooji and S. Purzer. Using students' previous experienceand prior knowledge to facilitate conceptual change in an introductory materials course. 39thIEEE Frontiers in Education Conference, San Antonio, TX, USA, 2009, pp. 1-5, doi:10.1109/FIE.2009.5350761.[7] S. Loucks-Horsley, K. Stiles, S. Mundry, N. Love, & P. Hewson, Designing professionaldevelopment for teachers of science and
decisions, reflecting a view that engineering designactivities provide a context for students to learn and apply scientific ideas [92], [95], [96].However, of the articles that investigated design-based science lessons, only 17% evaluated thelearning of science. Instead, research articles predominantly measured the impact of developingdesign practices (42%), followed by attitudes towards engineering (19%) and habits of mind(19%). If the goal of design activities is science learning, research is needed to understand theextent to which engineering education can meet this goal, as well as effective integrationstrategies. In addition, increased efforts are needed to overcome teachers' limited pedagogicaland content knowledge of engineering-based
discussed and it doing the opposite of amotor was examined through a brief presentation. An activity kit that used a hand-crankedmechanism to generate energy to light up an LED was built and tested. The principle of wind andhydro-electric generation and sources of renewable energy was discussed next.iv) Best Practices Database: Discussed the scientific approach and determined the mostappropriate sustainability-related activities – A brief description on how quickly earth’sresources are being consumed for energy generation by different countries and the impact ofgreenhouse gases on climate was presented. Fellows surveyed a web-based questionnaire tomentees that examined their sustainable practices [8]. Renewable energy source such as windand solar
Paper ID #44185Board 148: Ongoing Evaluation of Pre-College Students’ Learning OutcomesDuring a Human-Centered Engineering Design Summer CampMr. Justin Kota Shell, University of Illinois Urbana-Champaign Justin Shell holds a B.S. in Aerospace Engineering and is working on his M.S. in Aerospace Engineering at the University of Illinois at Urbana-Champaign. His graduate research focuses on diagnostics of electric propulsion thrusters. Also, he is a Siebel Center for Design research scholar focusing on integration of human-centered design principles in engineering curriculum.Vatsal Tapiawala, University of Illinois Urbana
framework[11] thatidentified skills and dispositions of engineering knowledge and practice for K-12 curricularframeworks[12]. Multiple researchers report from their findings that engineering can be theintegration vehicle for the STEM disciplines [13], resulting in improved student learning andmotivation. These benefits are not without challenges, however, and two of the most influentialfactors challenging science and engineering integration are #1) the lack of guidance for teacherson how to integrate the subjects[11], [13] and #2) the limited knowledge and experience base inengineering of K-12 teachers who, as a result, need scaffolding and support when preparing toteach concepts for their grade levels[1], [14]. The Engineering Design Process (EDP
after completing a post- doctoral fellowship at Georgia Tech’s Center for the Enhancement of Teaching and Learning (CETL) and three years as a faculty member at Olin College of Engineering in Massachusetts. Alexandra’s research aims to amplify the voices and work of students, educators, and Minority-Serving Institutions (MSIs) overall and support continued educational innovation within engineering at these institutions. Specifi- cally, she focuses on (1) educational and professional development of graduate students and faculty, (2) critical transitions in education and career pathways, and (3) design as central to educational and global change. ©American Society for Engineering Education
Maryland’s Public School System. He is nationally recognized for his work related to the safer design of makerspaces and collaborative STEM labs. Dr. Love is an Authorized OSHA Trainer for General Industry. He has also served on committees at state and national levels that developed P-12 engineering education standards. Dr. Love is the recipi- ent of ASEE’s Fall 2022 Middle Atlantic Conference Best Paper Award. Prior to his employment at the University of Maryland Eastern Shore he was a tenure track faculty member in elementary/middle grades STEM education at Penn State University’s Capital Campus.Mr. Brandt Hutzel, Pennsylvania Department of Education Mr. Hutzel is the Technology and Engineering (T&E) Content Advisor
engineering-focused teacher practitioner articles, chapters, and research articles, and presents her research regularly through the ASEE Pre-College Engineering Education Division, a division she has chaired. Her current research includes investigating how children plan, fail, and productively persist; how mixed-reality simulated classroom environments can be used to help pre-service and in-service teachers practice facilitating challenging discussions in science and engineering; and how undergraduate engineering design teaching assistants address (and may be able to practice addressing) team conflict within similar simulated environments. ©American Society for Engineering Education, 2024