brings science,economics (cost and financing), production, material selection, ascetics, form, function, humanfactors, logistics, operations, deployment, disposal, and every other facet of the project to an Page 10.56.7acceptable need solution. Acceptable solutions are usually sought because optimal solutions Proceedings of the 2005 American Society for Engineering Education Annual Conference & ExpositionCopyright ©2005 by C.F. Newberry. Published by the American Society for Engineering Education with permission.often cost more than they are worth – although optimal solutions tend to satisfy the “scientific”sense of order
that most of the papers with a focus onstudent engagement (139 in total) that were published between 2003 to 2023 reported howvarious educational interventions, such as use of distinctive pedagogies (e.g., project-basedlearning [2]; service learning [3]; game-based learning [4]), could enhance student engagement.While these studies contribute to identifying effective pedagogical approaches to enhancing theengagement of students at large, they were not designed to investigate who were more, or less,engaged in the educational practice; therefore, they do not inform how those students who wereless engaged in learning could be better supported to achieve optimal learning outcomes
to four-year universities to studyengineering bring a diverse range of experiences and perspectives, which greatly contribute to thefield of engineering and help national and regional workforce development. However, thesestudents face specific challenges, referred to as the vertical transfer penalty, when they transfer tofour-year universities. This can lead to lower completion rates for community college starterscompared to students who start at four-year universities. The issue seems to be related to factorsregarding the students' experiences, institutional characteristics, and geographic location. Thisstudy marks the initial stage of a comprehensive research project aiming to compare historicaltransfer student data over the past two
the five hierarchical levels of the affective domain (seeTable 1 for details on hierarchical levels). Finally, participants were asked (Q11) which of thethree domains they preferred to learn with and why. It should be noted that this interview consistedof questions about all three domains, and the results were split into three papers to better emphasizethe findings related to each domain of learning. In this paper, we focus only on the affective domainof learning. Readers interested in understanding more about the research on cognitive andpsychomotor domain are directed to the other papers from this project [2-3].Q1: How do you perceive learning as a process?Learning is an integral part of our lives. Each one of us learns the same things
for assessing interviewquality was developed as part of a larger, ongoing research project that is using IPA. From theIPA perspective, in-depth, one-on-one interviews effectively allow participants to recount richand detailed experiences in their lives [1]. The nature of semi- or unstructured interviews meanthat things can and do change throughout the course of the interview, and so, while it is commonto develop an interview protocol for an IPA interview, it generally serves the purpose ofpreparation for likely content and determining the appropriate order of questions rather thanstrict interview instructions. The interview quality reflection tool (IQRT)The development of the IQRT emerged as part of the ongoing IPA
/ethnicity, and immigration status among semiconductor en- gineers. She is currently the resident social scientist in the Electrical Engineering Department at Bucknell, exploring how to teach convergent (”deeply integrative”) problems to undergraduate engineers. Past re- search projects include studies of governance in engineering education and the influence of educational technology on engineering education.Dr. Stewart Thomas, Bucknell University Stewart Thomas is an Assistant Professor in the Department of Electrical and Computer Engineering at Bucknell University in Lewisburg, Pennsylvania. He received the B.S. and M.Eng. in Electrical Engi- neering from the University of Louisville in Louisville, KY. and the Ph.D. in
Texas Tech University Copyright © 2004, American Society for Engineering Educationconditions, relationships involving pressure, P, temperature, T, and the specific volume, vare known as equation of state and have the functional form: f (P,v,T) = 0In general, a functional relationship among any three properties could be call an equationof state. An equation of state serves two useful purposes. Its most obvious use is in theprediction of the PvT behavior of a substance over the desired range of values. Theequilibrium states of a simple compressible substance can be represented by a surfacePvT on a Cartesian coordinate system. The projection of a typical surface onto the P vplane is shown in
environments for mathematics education that rely heavily on students’ own comprehension processes for self-evaluation and self-directed learning (so-called unintelligent tutoring systems). Prof. Nathan has authored over 100 peer-reviewed publications, given more than 120 presen- tations at professional meetings, and has secured over $25M in research funds to investigate and improve STEM learning, reasoning and instruction. Among his projects, Dr. Nathan directed the IERI-funded STAAR Project, which studied the transition from arithmetic to algebraic reasoning, served as Co-PI for ©American Society for Engineering Education, 2023
engineering and design work.Dr. Molly Y. Mollica, University of Maryland, Baltimore County Molly Y. Mollica (she/her) is an Assistant Professor in the Department of Mechanical Engineering at the University of Maryland, Baltimore County (UMBC). Dr. Mollica earned her B.S. in Biomedical Engineering from Ohio State University (OSU), M.S. in Mechanical Engineering from OSU, and Ph.D. in bioengineering at the University of Washington. She also trained as a postdoctoral scholar-fellow at Bloodworks Northwest Research Institute. Molly’s wetlab research interests are at the intersection of engineering mechanics, mechanobiology, and health equity. Her educational research interests are in community-engaged learning, project-based
educational structures and practices, to recognize,confront, and address the harms of settler colonialism and anti-Indigeneity (e.g. [7]).Our focus on four distinct transdisciplinary approaches reflected the conference’s theme, but alsospoke to the sometimes amorphous identity of the SIG itself. The SIG is made up of membersworking in non-traditional engineering education spaces, including projects and initiativesfocusing on sociotechnical knowledge and humanistic engineering, arts and humanitiesintegration within core engineering curricula, communication and teamwork instruction,transdisciplinary integration of leadership, and decolonizing engineering education. Itsmembership includes engineers who have developed transdisciplinary research and
education- ally based research projects with an emphasis on statistical analyses and big data. ©American Society for Engineering Education, 2023 Use of Transfer Student Capital in Engineering and STEM Education: A Systematic Literature Review1. Introduction This complete research paper presents a systematic literature review that synthesizes theuse of Laanan’s theory of transfer student capital in postsecondary vertical college transfers,specifically focusing on use in engineering and Science, Technology, Engineering, andMathematics (STEM) education [1]. The motivation for this research stems from a need to betterunderstand the theory of transfer student capital, which
projects can foster the inclusion of students with learning disabilities (Daniela and Lytras, 2019; Nanou and Karampatzakis, 2022). In the case of tertiary education, industrial-scale robots are used to prepare students for careers in industry by emphasizing aspects such as hardware, software, and human-machine interfaces (Nagai, 2001; Brell-Çokcan and Braumann, 2013). However, industrial-scale robots are expensive to purchase. In addition, there is usually some oversight over their usage due to time-sharing and to prevent damage, which prevents "free-play" by students. Some solutions to this include the use of miniature robots and the use of online labs (Mallik and Kapila, 2020; Stein and Lédeczi, 2021). Though these reduce the cost of the setups
many projects: eyeball tear glucose monitoring [3] and measuringintraocular pressure [4]. Mojo Vision has developed a very powerful, general-purpose augmented reality contact lensas of 2021 [5]. State-of-the-art techniques for constructing soft contact lenses with wireless circuits embedded in themare well under way [6]. Visual prostheses, or smart bionic eyes, are a subject of recent discussion [7]. Clearly, modern technology has the potential to be used in cheating, academically oriented or otherwise. Thispotential will likely only increase as microelectronics become more available to the public. Mobile phones areexceedingly common personal devices, with 95.5% of high school students owning one [8]. In the classroom, they arethe objects
engineeringknowledge and skills. In the course, students were assigned the role of associate engineers fora consulting group. The associates were responsible for providing engineering expertise torural communities to assist in developing local small agricultural and food manufacturingbusinesses and start-ups. Students were informed and familiarized with the course design,their roles, and activities in the early weeks of the semester. In class, limited time was allottedfor lectures on technical content and more on engaging students in workplace-like activitiessuch as discussions, training problems, and projects. Students were expected to completetraditional course lecture material outside of class so that class time could be efficientlyutilized to answer
Paper ID #38851Literature Exploration of Graduate Student Well-Being as Related toAdvisingDr. Liesl Klein, Villanova University Liesl Krause-Klein is a assistant teaching professor at Villanova University in their electrical and computer engineering department. She graduated from Purdue University’s Polytechnic institute in 2022. Her research focused on student well-being. She is currently in charge of curriculum for capstone projects within her department.Dr. Greg J. Strimel, Purdue University at West Lafayette (PPI) Greg J. Strimel, Ph.D., is an associate professor of Technology Leadership and Innovation and program
robotics, biomedical devices, and engineering education. He teaches introductory design, mechanics, mechatronics, capstone design, medical devices, and product design & entrepreneurship. His interests in design education includes increasing student motivation, teamwork, hands-on projects, and integration of theory into design projects. In 1999 he co- founded Coactive Drive Corporation (currently General Vibration), a company that provides haptic solutions. In 2016 Nate co-founded eGrove Education, Inc. an educational software company focused on teaching sketching and spatial visualization skills.Carolyn L Sandoval (Associate Director) © American Society for Engineering Education, 2022
KEEN’s Rising Star award. Her grants related to inclusive pedagogy include a recent Engineering Unleashed Fellowship and an NSF project on developing inclusive Making/Makerspace curriculum through faculty development and training. She is also passionate about open education resources (OER) and open pedagogy and using food/baking to explain STEM concepts. She received her BS degrees in Engineering Science and Mechanics and Computational Mathematics from Virginia Tech, her MS degree in Biomedical Engineering from Virginia Tech - Wake Forest University, her PhD in Biomedical Engineering, and a graduate certificate in Teaching and Learning from the University of Surrey. Her current research spans cell electrophysiology
industry projects. Dr. Olechowski completed her BSc (Engineering) at Queen’s University and her MS at MIT, both in Mechanical Engineering. Dr. Olechowski studies the processes and tools that teams of engineers use in industry as they design innovative new products.Katherine Mao Katherine is a recent graduate of the University of Toronto's Engineering Science program majoring in Robotics. She wants to build tech to transform the way humans interact with the world and has an interest in human-centered and interdisciplinary approaches to design. © American Society for Engineering Education, 2022 Powered by www.slayte.com Advancing a Model of Students
study as an actionresearch project because, as Glesne notes, action research has “the intent to change something,to solve some sort of problem, to take action” [35, p. 18]. Furthermore, it was important for meto position myself as a research practitioner and study my own practice. Bullough and Pinnegarsuggested self-studies should “seek to improve the learning situation not only for the self but forthe other” and “attend carefully to persons in context or setting” [36, p. 17-18]. I intend to applythese findings to my own practice and hope to influence the practices of other individualprofessors and to other programs or institutions as I collaborate with peers and disseminate myfindings. Stringer argues that “by working collaboratively
in contrast to Zimbabwe. Engineers were represented wearingformal attire, wearing a tie (for male representations) and skirt (for female) and carrying abriefcase. Equal amounts of representation were engineers wearing protective gear such as hardhats and boots, but a few of the images also included a construction site that showcased theengineer as a supervisor for a project. These depictions are in-line with the idea of engineering asa high-status professional activity compared to more hands-on representations seen inZimbabwe. Figure 1: Gender depiction of engineersIn both the Zimbabwean and Senegalese contexts, there were many drawings of engineers of anindiscernible gender (44% in Zimbabwe, 58% in Senegal). These
. The bonds of “shared struggle” wereforged through study groups, course project teams, and senior capstone project. Studyparticipants reported forming peer study groups to be crucial to their academic learning andformation of social connections. Daniel was proactive in starting and joining study groups: Because most of them were engineers, we just started studying together. So, I just met people in my dorm that were like exceptionally good in certain subjects. One guy literally sat down for two hours to teach me a concept that like I was really struggling with. So having a friend group to fall back on if I don’t understand something has been big for me.When study participants entered “in their major,” they reported
Junior Faculty Award, a DuPont Young Professor Grant (2006-2009), a 2008 ACS PROGRESS/Dreyfus Lectureship and a Fellow of the AVS (2015). Amy served as the 2020 AVS President and is currently an Associate Editor of the Journal of Vacuum Science & Technology. © American Society for Engineering Education, 2022 Powered by www.slayte.com Exploring Climate and Student Persistence in Engineering and Computer Science through Engineering Culture (Work in Progress)AbstractThis work in progress (WIP) paper describes the initial stages of a project to explore students’perceived climate and how that influences their persistence within engineering and
Paper ID #37619How (Inter)national Engineering Faculty Members Perceiveand Teach Creativity: A Cultural PerspectiveHao He Hao He is currently a Ph.D. candidate from the School of Information Science and Learning Technologies at the University of Missouri-Columbia, with research interests in engineering education, creativity fostering, virtual reality learning environment, and game-based learning. He received his BA in English Language and Literature from Zhejiang University City College in China in 2008 and then worked as an English teacher and an instructional project manager for seven years. He received his
can be relied upon. This requires moving students beyondrecording their calculations and numbers to presenting narratives that readers can understand andbelieve. Morrow [10], writing about data literacy, indicates “our minds do better with storiesthan with data. We need to empower people to share stories and communicate the results,analyses and insight found in the data” (pp. 47-48). However, these stories will need to be told toa range of audiences. This range of audiences is broadening as the practice of engineering ismoving increasingly toward interdisciplinary projects and global work and work teams [11],[12].The adage to know what you write can be perceived in two ways when examining writing inprobability and statistics. First, students
Francisco de Quito USFQ MiguelAndr´es is an Assistant Professor in the Polytechnic College of Science and Engineering at Uni- versidad San Francisco de Quito USFQ. He holds a BS in Civil Engineering from USFQ, an M.Sc. in Construction Engineering and Project Management from Iowa State University as a Fulbright Scholar, a Ph.D. in Civil Engineering from Virginia Tech, and two Graduate Certificates from Virginia Tech in Engi- neering Education and Future Professoriate. MiguelAndr´es’s research includes sustainable infrastructure design and planning, smart and resilient cities, and the development of engineers who not only have strong technical and practical knowledge but the social awareness and agency to address global
focus on social justice inengineering. In environmental sciences and engineering departments, such as those at Universityof California (UC), Berkeley and UC Davis, courses on engineering’s impact on the environmentare being developed. UC Berkeley has a course called “Engineering, Environment, and Society”where students read scholarly works on social justice, examine case studies for impact andinjustice, and work with community clients on projects developing solutions to environmentalissues that disproportionately affect members of historically marginalized groups [20], [21].Hendricks et. al., provided the structure and objectives for their course “Science and Engineeringfor Social Justice,” as a blueprint for other faculty. Their course is
Paper ID #38720Poetry writing to enhance conceptual understanding of mathematicalmodels and approaches for inventory managementProf. Elif Akcali, University of Florida Dr. Elif Akcali is an Associate Professor in the Department of Industrial and Systems Engineering and an affiliate faculty member in the Engineering Innovation Institute at the University of Florida. She is an industrial engineer, a visual artist and an explorer of the interplay between engineering and the arts.Saron Getachew Belay Saron Belay is a Project Manager at Starbucks Technology and a recent graduate from the University of Florida with a
Paper ID #37505Work InProgress: Infrastructure Live! An Electric Experience on a SingleMobile ChalkboardLt. Col. Scott M. Katalenich, Ph.D., United States Military Academy Lieutenant Colonel Scott M. Katalenich is an Assistant Professor in the Department of Civil and Me- chanical Engineering at the United States Military Academy, West Point, NY. He earned a B.S. in Civil Engineering from the United States Military Academy, M.Phil. in Engineering from the University of Cambridge, and an M.S. and Ph.D. in Civil & Environmental Engineering from Stanford University. He is a licensed Professional Engineer (Alaska), Project
Paper ID #38901Student-led program to improve equity in Ph.D. oral qualifying examsMeredith Leigh Hooper, California Institute of Technology This author was an equal first author contributor to this work. Meredith Hooper is an Aeronautics PhD student studying under Professor Mory Gharib in the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT). Meredith is a National Science Foundation Graduate Research Fellow, leader within the GALCIT Graduate Student Council, and Co-Director of the Caltech Project for Effective Teaching (CPET). Her PhD research uses a combination of machine learning and
differential ZTE. Instead, a somewhat heuristic algebraic equation wastypically used to estimate the indoor air temperature variation or “swing”. This approach wasfollowed in pioneering projects such as the one resulting in the historically significant program,NBSLD, described in [1]. This program also introduced some significant heat transfer andrelated modeling methods. Another important pioneering effort, the BLAST program [2], used asimilar method. This observation is also confirmed independently as reported in [3]. Thesepioneering efforts evidently did much to lead to the practically significant and important nextgeneration DOE2 program (later implemented as eQUEST) as described in [4] and elsewhere.This programming approach was followed by the