the building collapsed similar enough that useful and the team had to come to an agreement comparisons are drawn. whose fault the collapse was. Followed Necessitates some form of debrief by a debrief on the social difficulties or reflection. associated with ethics-related engineering disasters (Lloyd & van de Poel, 2008). Feedback-practice Students practice the application of A digital game that gave students skeleton loop concepts or skills, get feedback code, asked students fill in the rest of the
intersections between professional communication research and social justice—at the 2012 International Professional Communication Conference.Dr. Juan C. Lucena, Colorado School of Mines Professor Lucena is Director of Humanitarian Engineering at Colorado School of Mines and teaches Engineering & Sustainable Community Development and Engineering & Social Justice. Juan obtained a Ph.D. in STS (Virginia Tech) and two engineering degrees (Rensselaer). His books include Engineering and Sustainable Community Development (Morgan &Claypool, 2010) and Engineering Education for Social Justice (Springer, 2013). He has researched under grants like Enhancing Engineering Education through Humanitarian Ethics, and Invisible
science; historical, philosophical, cultural, sociological, political and ethical. The STSEeducational approach typically includes the following features: • An understanding of the environmental threats, including those of a global nature, to our quality of life • The economic and industrial aspects of technology • An understanding of the fallible nature of science • Discussion of personal opinion and values, as well as democratic action • The multi-cultural dimension of scienceThis paper, through an extensive literature review and qualitative data from interviews withseveral female engineering students and recent graduates, demonstrates why female studentsrespond well to this form of education, drawing from theories on
responsibleinnovations that embrace ethical and ecological contexts. Traditionally, engineering as aprofession has focused primarily on a set of technical skills, such as problem solving, design, andmodeling. It is undeniable that these skills are core and important. However, the target attributesfor future engineering graduates, such as featured in the National Academy of Engineering’s(NAE) “Engineer of 2020”, include specific character qualities and affective dispositions as well, Page 25.520.2wherein promoting traits such as empathy and care is sometimes referenced as holisticengineering education.6The NAE now emphasizes the need to promote engineering
Paper ID #37975Advancing a Model of Students' Intentional Persistence inMachine Learning and Artificial IntelligenceSharon Ferguson Sharon is a PhD student in the department of Mechanical and Industrial Engineering at the University of Toronto. She previously completed her Bachelors in Industrial Engineering also at the University of Toronto. She is passionate about supporting women in Engineering and STEM more broadly, both within and outside of her research. She has held fellowships in Ethics of AI and Technology & Society organizations.James Magarian James Magarian, PhD, is a Senior Lecturer at the
Paper ID #39820Board 44A: Work in Progress: Unannounced Frequent Examinations tocontribute student learning and building academic integrityMr. John Mario Bonilla, USFQ John Bonilla is an undergraduate student in the Polytechnic College of Science and Engineering at Univer- sidad San Francisco de Quito USFQ. John’s interests, in civil engineering include infrastructure develop- ment and transportation. Furthermore, John is interested in supporting the development of engineers who not only have strong technical and practical knowledge but also a strong ethical set of values. Currently John is working on his application to
engineering ethics, writing in the disciplines, and the development of professional skills.Shelly Sanders, Mississippi State University Shelly is currently an instructor in the Shackouls Technical Communication Program in Mississippi State University’s James Worth Bagley College of Engineering and has taught technical writing as well as various English composition and literature courses at MSU since 2005. She also tutored writing with the English department’s Writing Center from its inception in the early 2000’s until 2015. She holds a bachelor’s degree in English from The University of Alabama and a master’s degree in English from Mississippi State University. ©American Society for Engineering
attributes of, “The ability to learn a new skillfairly quickly.” (Student-05). Being organized as in “staying on top of your tasks” (Student-03),along with having “a positive, upbeat attitude” (Student-03), and being empathetic, patient,collaborative, self-aware and ethical were also important attributes mentioned by students.Learning to manage one’s education. Students responded to the question about what they woulddo differently if they could start over in their engineering education. Most emphasized theimportance of joining organizations, clubs, and making better use of the resources offered by theschool and university (e.g., Career Services and advising). Some described the importance ofhaving an open mind and being more proactive about having a
studies from bothcategories. Specific resources listed for case studies included West Virginia University [3],SACHE [4], University of Michigan [5], LearnChemE [6], and textbook online resources [7].Faculty also use the literature, personal experience, and alumni as resources. Case studies areused in discussions, in-class activities, homework, and/or projects for a variety of reasons: • to motivate the material, • for ending examples to show the student how much they’ve learned, • to include ethics, sustainability, health, and safety concerns, • as a context for design and analysis, • to expose students to the broad field of chemical engineering; real-world applications, and • for process flowsheets.Of the 95 courses
actively engages with powersystems and dialogue, honoring lived experiences and committing to an ethic of care andaccountability. This provocation provides a sample case for understanding accomplicerelationships and suggests heuristic for potential accomplices to use in establishing enduringcoalitions between Black and white women.IntroductionIn 1979, Audre Lorde [1] published a letter she’d written to Mary Daly, author of Gyn/Ecology.In it, Lorde, a Black queer woman poet and theorist, praised Daly for her work and yet shared thereality facing Lorde as she read it: To imply, however, that all women suffer the same oppression simply because we are women is to lose sight of the many varied tools of the patriarchy. It is to ignore
) prepared them for their professional career with respect to a number of leadershipcompetencies: 1) leading teams (lead meetings, identify personality preferences and adjustenvironment/style) 2) think strategically by applying mission, vision, and values statements to ateam or organization 3) work effectively in teams 4) apply project management processes toprojects 5) give and receive feedback 6) self-reflection on leadership skills and how to improve7) recognize ethical issues & practice ethical decision making 8) develop a culture that promotescreativity and innovation 9) cross cultural/ global competencies (appreciation of other cultures,understanding bias, working in a culturally diverse team) 10) emotional intelligence (regulateemotions
skills, such as findingand using reliable information, conducting their work ethically, and locating standards and codes[3], [4]. As such, engineering students need comprehensive and effectively designedinformation-seeking instruction.Traditionally, information-seeking behavior instruction is formally delivered in person, followedby in-class activities that give students opportunities to practice their skills. In this setting,instructors, librarians, and teaching assistants can directly observe and guide student behavior,while students can ask questions and receive real-time feedback. These interactions have beenshown to improve learning outcomes by facilitating student engagement [5]. With classes movedonline, educators are left to determine
domain area was developed (see Table 3). Table 3: Domain Areas (EVT, EI, & Sense of Belonging) Model 1st Domain Area (Initial code) 2nd Domain Area Expectancy-Value Theory Competence Belief Intellectual Development Engineering Identity Attainment Value Social Persuasion Sense of Belonging Interest (EVT) Mastery Experience Utility Value Attention to Human Ethical values Recognition Personal Integrity
ability to apply knowledge of mathematics, science and engineering b. An ability to design and conduct experiment, as well as to analyze and interpret data An ability to design a system, component, or process to meet desired needs within realistic c. constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability d. An ability to function on multidisciplinary teams e. An ability to identify, formulate, and solve engineering problems f. An understanding of professional and ethical responsibility g. An ability to communicate effectively The broad education necessary to understand the impact of engineering solutions in a
and business. Each team had to research policiesor regulations that relate to their topic, determine the stakeholders for the problem, and develop astudy to investigate the issue. Given the limited time of one semester to develop and completetheir study, all groups conducted survey-based research or observational studies. Each grouplearned about ethics in research and was required to complete human subjects based researchtraining and to submit their study to the university institutional review board.A total of six research projects were completed with each requiring a problem statement and/orresearch questions, literature review, development of data collection procedures, experimentaldesign, data analytics, oral presentations, and a final
-emphasizing social and economicpillars. Furthermore, most instruction on sustainability, as reported in the literature, appears tofocus on teaching the engineering student to be an engineer who practices sustainabledevelopment rather than a consumer who has a role in sustainable practice. In part, thisemphasis on the engineer's role in sustainability is a result of the Accreditation Board forEngineering and Technology (ABET)'s mandate that engineering undergraduates complete theirdegrees having achieved student outcome (c): “...an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability
engineering skills to addressglobal societal problems. Also, the ABET criteria requires engineering programs toprovide “the broad education necessary to understand the impact of engineering solutionsin a global, economic, environmental, and societal context.” These two factors haveraised fundamental questions about how to effectively prepare engineering students toengage with underserved communities globally. This paper uses a case study approachto document the experiences of students of a global engineering course. This courseoffered students the unique opportunity to address sanitation and hygiene issues byworking with a community rather than for it. The paper highlights curricular innovationsthat ensured ethical, sustainable collaboration with the
daily meetings with mentors, the frequency for which 100% of participants report was “just right.” Likewise, the weekly program- wide lunch sessions were successful at creating a sense of community. ● Women report greater gains in confidence than men, who also had positive gains. ● The 2020 cohort had greater gains in knowledge concerning presenting research and ethics in research, yet lower gains in knowledge related to career options and graduate school awareness and preparing research proposals as compared to 2019. ● Participants report increasing their sense of belonging as scientists, but not feeling like members of a scientific community. 2020 participants were much more likely to report
, environmental, ethical, and resource-limiting constraints. They work with diverseconstituencies to solve rapidly-changing, complex problems. To be productive and responsive inthis environment, engineering professionals must create innovative yet practical and responsiblesolutions that benefit society. As Schön (1983) argues, engineers will need to practice reflection-in-action (learning and adjusting as they perform) as well as reflection-on-action (intermittentanalysis of conditions that leads to major advances). As agents of change, they continuously askquestions, make judgments, learn, and choose appropriate actions. Engineers must be competent,reflective practitioners if they are to contribute effectively in a dynamic global environment.This paper
, processes, projects, networks)-operation (doing = active action)-in the real world (not in model world),-based on positive feelings (enthusiasm, love, hope, compassion, respect, faith, humor) by-selected (not all),-internally-driven (committed)-people (not organizations), who can-manage wholes (operative, tactical and strategic levels) and possess-continuously renewed knowledge and skills (mental models) and-adequate information (external models of different forms),-adequate resources (money),-adequate time (key people), and-efficient tools (concrete and abstract tools, technology) within-physical,-environmental, and-ethical constraints.The checklist includes 23 items. The list is multiplicative in nature: in case one of the pointsis missing, the
Engineering Through a Humanistic Lens” in Engineering Studies 2015 and ”A Game-Based Approach to Information Literacy and Engi- neering in Context” (with Laura Hanlan) in Proceedings of the Frontiers in Education Conference 2015. A classroom game she developed with students and colleagues at WPI, ”Humanitarian Engineering Past and Present: Worcester’s Sewage Problem at the Turn of the Twentieth Century” was chosen by the Na- tional Academy of Engineering as an ”Exemplary Engineering Ethics Activity” that prepares students for ”ethical practice, research, or leadership in engineering.”Ms. Laura A. Robinson, Worcester Polytechnic Institute Lead Research & Instruction LibrarianProf. John M. Sullivan Jr, Worcester
Proceedings that same year, Steneck, Olds, and Neeley(2002) argued that the EC2000 criteria “provide[d] opportunities for more clearly defining andstrengthening the role of liberal education in engineering” (p. 1). More specifically, they claimedthat “Liberal education can contribute significantly to the development of all the programoutcomes defined by ABET and is essential to seven of them” (d-j) and to the requirement thatthe major design experience prepare students to deal with “economic; environmental;sustainability; manufacturability; ethical, health, and safety; social; and political” issues.1Recognizing that the new scheme for accreditation specified outcomes but not how the newrequirements should be met and that many engineering educators
, and MATLAB) and be able to explain your rationale for your choice; 5. Synthesize your knowledge of effective and ethical membership on a technical team (i.e., teaming skills) to refine your conduct as a member of the team. 6. Exhibit a work ethic appropriate for the engineering profession.B. ProceduresPre- and post-engineering enculturation surveys were developed to see how studentsexhibit characteristics of the engineering enculturation outcomes through the engineeringprogram on their way to becoming professional engineers. The students were surveyedwith open-ended questions and their responses were dissected for dominant viewpoints.First, the entire FYE foundation course of over 3,600 students was invited through anemail to
encompasses philosophy of technology and of engineering and engineering education. I am now studying grassroots engineering (GE) and so- cial/solidarity technology (ST), as well as engineering education, focusing, on one hand, on the ethical- political, aesthetics, and epistemic aspects that both characterize and make GE and ST possible, and, on the other hand, on the challenges the engineering education must face in order to train/develop the capa- bilities or skills engineers must possess so to be able of doing GE and producing ST. The work I currently develop at ITA is related to the conception and institutionalization of a minor in engaged engineering. c American Society for Engineering
neural engineering data and results, and ethical and responsible conduct of research in neural engineering, and the role of neuroethics in neural engineering. 2. Neural engineering best practices: Knowledge of oral and written communication of neural engineering knowledge and research, and innovation. 3. Connections to neural engineering industry and careers: Knowledge of industry’s role in neural engineering, careers in neural engineering, and careers in neuroethics.Conceptual Framework The design of this RET program is guided by sociocultural theories of learning,including: cognitive apprenticeship [6]; situated learning [7], [8]; distributed expertise [9], [10];and
) law. He is the Director of the Entrepreneurship Clinic at IU-McKinney where he also teaches Patent Law and Patent Prosecution. Additionally, he teaches a three-course sequence in engineering where students learn about IP law as it applies to engineering design and engineering careers.Dr. Justin L. Hess, Indiana University-Purdue University of Indianapolis Dr. Justin L Hess is the Assistant Director of the STEM Education Innovation and Research Institute at IUPUI. His research interests include ethics, design, and sustainability. Dr. Hess received each of his degrees from Purdue University, including a PhD in Engineering Education, a Master of Science in Civil Engineering, and a Bachelor of Science in Civil Engineering
Paper ID #16261A Civil Infrastructure System Perspective - Not Just the Built EnvironmentDr. Douglas Schmucker P.E., University of Utah Dr. Schmucker has 20 years experience in teaching and consulting. Focused on high quality teaching following the T4E, ExCEEd, and NETI teaching models, he currently is a full-time teaching professional with a focus on practice, project, and problem-based teaching methodologies.Dr. Joshua Lenart, University of Utah Dr. Joshua Lenart is an Associate Instructor with the Communication, Leadership, Ethics, and Research (CLEAR) Program at the University of Utah where he teaches technical
, which has been funded by the NSF, Department of Ed, Sloan, EIF, and NCIIA. Dr. Sacre’s current research focuses on three distinct but highly correlated areas – innovative design and entrepreneurship, engineering modeling, and global competency in engineering. She is currently associate editor for the AEE Journal.Dr. Larry J. Shuman, University of Pittsburgh Larry J. Shuman is Senior Associate Dean for Academic Affairs and Distinguished Service Professor of industrial engineering at the Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of
prominence in the 1990s in K-12 education research. Post-secondary education has had relatively little to do with this term until the past decade, where thetrends have conjoined. One notable researcher who spans these decades is John Heywood, whose“Engineering literacy for non-engineers K-12” argues that the non-engineering public must cometo appreciate the potential and the limitations of engineering, to situate that understanding withinsome ethical framework.1 He extends this work into a more-detailed explication of engineeringliteracy, worth replicating in whole: Engineering literacy requires that we understand how individual’s [sic], organizations and society interact with technology, and this requires an
categories with well-defined learninglevels selected for the classification of specific PIs. The Learning Domains Wheel wasimplemented with Venn diagrams to represent details of the relationship of popular learningdomains categories, interpersonal skills, and the types of knowledge. INTERPERSONAL IT skills Teamwork Affective Professional ethics Leadership Drawing Life-long learning