and Computing Students” (Washington, D.C., 2012)4. Davari, S., Abeysekera, K. and Yue, K., “Building STEM Awareness through Programming Competition”, the Fourth Annual Texas Engineering and Technology Consortium Best Practices Conference, Austin, February 11- 12, 20095. Abeysekera, K., Davari, S., Yue, K., Brown, E., Kent, M., Betts, P., & Meeks, J., Success through Academic Recognition (STAR): Sustaining and Expanding UHCL and SJC TWD Computer Science Scholar Program, the third annual Texas Engineering and Technology Consortium Best Practices Conference, Dallas, Feb. 28, 2008, pp 7-9. www.thecb.state.tx.us/index.cfm?objectid=8828378A-D358-8867-5E14BDC65C9860B96. Abeysekera, K., Zhang, T., Perkins-Hall, S
Reformulate 3 Generating Documentation and Data Management Controlling Storing DistributingAs mentioned, the need analysis stage is regarded as the most important part of the designprocess. It is a process of problem finding and representing as opposed to problem solving. It isdivided into three (3) phases: identification, representation and communication. These divisionsare based on Karuppoor et al.27’s design philosophy, emphasizing the
include:intermediate feedback to students to facilitate successful progress; use of screencasts to illustratecomplex operations; rubrics for students; instructor support in terms of key solutions andsupporting material; and templates for data analysis and advances statistical/modeling tasks.AcknowledgmentThe authors acknowledge the support provided to this study by the National ScienceFoundation's Transforming Undergraduate Education in Science, Technology, Engineering andMathematics (TUES) program under Collaborative Award No. 1122898 (Type II).Bibliography1. Tarboton, D. G., J. S. Horsburgh, D. R. Maidment, T. Whiteaker, I. Zaslavsky, M. Piasecki, J. Goodall, D.Valentine and T. Whitenack, (2009), "Development of a Community Hydrologic Information
605 .58 598 .48 Regents English IV Boys 429 .47 430 .43 406 .36 Girls 229 .58 229 .58 224 .42 Total 658 .47 659 .53 630 .43 Rank in H. S. Class* Boys 253 .47 264 .43 226 .34 Girls 157 .60 157 .62 145 .56
Step 3 Communicate the Develop Solution(s) Design Solution(s) Process Step 6 Step 4 Evaluate Select Best Solution(s) Solution(s) Step 5 Construct Prototype Figure 2. The steps of the engineering design process. Note that each step can also cycle back to
. Infact, other disciplines such as large-scale systems theory may need to be applied to addressthe management of large data when it comes to real-time control of complex systems.References 1. Guide to the Systems Engineering Body of Knowledge (SEBoK). Retrieved December 31, 2015, from http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK) 2. Blanchard, B. S., & Fabrycky, W. J. (2010). Systems Engineering and Analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall. 3. Banks, J., Carson, J. S. II, Nelson, B. L., & Nicol, D. M. (2009). Discrete-Event System Simulation (5th ed.). Upper Saddle River, NJ: Prentice Hall. 4. Buede, D. M., &
to write this off as an historical relic, statements such as these have gone un-critiqued in the last 20 years. It should also be noted that another kind of study exists: thosethat compare and contrast male and female department heads or examine women in academicleadership positions12,64,68-71. While presenting another important approach to studyingrelationships between gender and department heads, such studies are not central to theanalysis at hand.Fourth, a discourse of fairness permeates the literature. As the following quotationsdemonstrate, many publications emphasize that the head has an obligation to act ‘fairly’ andthat (s)he will be most successful if (s)he makes ‘fair’ decisions. Several of the numerousexamples include
bothcompletion and accuracy, and partial credit was awarded for both. For the homework, since alarger number of problems were submitted, only a selection of problems that were submittedwere assessed for each assignment. Table 1: Description of courses included in the study ID Assessment Term Class Period Instructor(s) N* H1 Homework Fall 2013 TR 8:00-10:45am A&B 37 H2 Homework Spring 2014 TR 8:00-10:45am A&C 32 Q1 Quizzes Fall 2014 WMF 8:00-9:50am A&C 35 Q2 Quizzes Fall 2014 MWF 11:00-12:50pm B 33*N is the number
2 Q A process occurs toState Change S S irrev change the system’s state. 1 1 Q2 , out 1W2 , out 1 T
can be used for actual programming, as well as forexecuting, debugging, and visualizing. Thus, our specific aim was two-fold: first, help learnprogramming/problem solving and, second, facilitate the learning of a textual programminglanguage – the C language. The actual hypothesis tested in the present study was X. The resultsof the experiment that was designed to test our expectation fully support our hypothesis. In whatfollows, we will briefly introduce the tool used and proceed with the discussion of theexperiment and the results.Related WorkThere are many different approaches to facilitating the acquisition of programming language(s).For instance, in order to avoid the complexity of full-fledged programming languages, one canuse simplified
other 21 Century Skills. • It meets common core and next generation science standards.More information and resources for implementation can be found at novelengineering.org. Page 26.1097.2 This project is funded by the National Science Foundation DRK-12 program, grant # DRL-1020243. Any opinion, findings,conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Engineering Teacher, pp. 30-35, May 2014.[2] International Technology Education Association, “Standards for Technological Literacy: Content for the Study of Technology,” 3rd ed., 2007. [Online]. Available: http://www.iteea.org/TAA/PDFs/xstnd.pdf. [Accessed: 01- Apr-2015].[3] D. Sianez, M. Fugere, and C. Lennon, “Technology and Engineering Education Students’ Perceptions of Hands-On and Hands-Off Activities,” Research in Science & Technological Education, vol. 28, no. 3, pp. 291- 299, Nov. 2010.[4] M. Milojkovic, M. Milovanovic, D. Mitic, S. Peric, M. Spasic, and S. Nikolic, “Laboratory CNC Machine for Education of Students on Control Systems Engineering,” Facta Universitatis, vol. 13, no. 2, pp. 117-125, 2014.[5] D. Rijmenants
a refinement of strategiesthat experienced physics teachers have been teaching for decades and because it is optimized forthe types of problems traditionally found in physics textbooks. The prescriptions aim to steerstudents away from common novice approaches such as identifying the unknown and searchingfor an equation that contains it, or pattern matching based on superficial aspects of the physicalscenario.12, 15 Although details differ, the prescriptions generally consist of steps like these: 1. Using diagrams as needed, visualize and make sense of the physical situation conceptually/qualitatively. 2. Explicitly identity the relevant physics principles. 3. Using the insights from (1) and (2), write equation(s) that can be
was supported in part by NSF award 1431694, Optimizing Student Team SkillDevelopment using Evidence-Based Strategies.References1 Brutus, S., & Donia, M. B. (2010). Improving the effectiveness of students in groups with a centralized peer evaluation system. Academy of Management Learning & Education, 9, 652-662.2 Mayo, M., Kakarika, M. Pastor, J.C., & Brutus, S. (2012). Aligning or inflating your Leadership self-image? A longitudinal study of responses to peer feedback in MBA teams. Academy of Management Learning & Education, 11, 631-652.3 Brutus, S., & Donia, M. B., & Ronen, S. (2013). Can business students learn to evaluate better? Evidence from repeated exposure to a peer
Evidence-Based Strategies.References1 Brutus, S., & Donia, M. B. (2010). Improving the effectiveness of students in groups with a centralized peer evaluation system. Academy of Management Learning & Education, 9, 652-662.2 Mayo, M., Kakarika, M. Pastor, J.C., & Brutus, S. (2012). Aligning or inflating your Leadership self-image? A longitudinal study of responses to peer feedback in MBA teams. Academy of Management Learning & Education, 11, 631-652.3 Brutus, S., & Donia, M. B., & Ronen, S. (2013). Can business students learn to evaluate better? Evidence from repeated exposure to a peer evaluation system. Academy of Management Learning & Education, 12, 18-31.4 Ohland, M. W
of the longitudinal study. Once validated, the appropriate survey willbe administrated to students at least 4 times throughout their undergraduate career toanalyze engineering perception and how it changes over time.Reference1. Besterfield-Sacre, M. E., Atman, C. J., & Shuman, L. J. ([1996]). Pittsburgh freshman engineering attitudes survey University of Pittsburg.2. Davis, D. C., Trevisan, M., Brown, S., French, B., Davis, H., LeBeau, J. & Brooks, S. Pittsburgh freshman engineering attitudes survey (PFEAS). Retrieved from http://assess.tidee.org/instruments/details/953. Abou-Jaoude, G., & Najjar, M. (2011). Perception of Lebanese middle school students about engineering. Paper presented at the 2011 IEEE Global
Paper ID #12043Problem solving in a multidisciplinary environment: observations from anewly developed programLuciana C. El Debs, Purdue University Luciana Debs, is a Technology doctoral student and Graduate Research Assistant in the Department of Building Construction Management at Purdue Universitys College of Technology. She received her MS from the Technical Research Institute of Sao Paulo (IPT-SP), and her BSArc from the University of S˜ao Paulo (USP), both in Sao Paulo, Brazil. Prior to her current position she worked in design coordination in construction and real estate development companies in Brazil. Her research
culminated in an engineering design activity tied to curriculumcontent.During curriculum exchange copies of the tools will be available to teachers, and examples of teachercreated units using the templates will be shown. Teachers will be able to start to work through anduse the design templates to get a better feel for how they can be incorporated into lesson design.These tools are ideal for use in Lesson Study or Professional Learning Communities, or as part ofco/team teaching.Below is an example of a filled Frame: Page 26.434.2Page 26.434.31. University of Kansas Center for Teaching and Learning, http://www.ku-crl.org.2. Ellis, E. S., (1994
ammonia production? When needed? Expertise available to operate?) - What is your production target? What is the target scale/size/weight? (Hand- pulled or animal-pulled cart, car trunk, tractor, etc.) - Who is going to be the end-user? What expertise you expect they have? Consider different degrees of complexity! A farmer? An explorer? A trained research technician? - What balance do you envision about uses of ammonia: e.g., as fuel, as fertilizer, as a hydrogen source for H2 fuel cells, etc? - What mode(s) of production should you consider? (batch, continuous, other?) - What might affect the optimum pressure and temperature for the production facility, considering the limitations by the
information science; her industry experience includes systems analysis and cognitive science applications. She is one of the Principal Investigators on two NSF S-STEM and one NSF ADVANCE-PAID grants. With a life-long interest in technology and its potential for enhancing human capabilities, her research includes advances in analytics, motivated system energetics, and other topics relative to knowledge-intensive systems.Dr. Karinna M Vernaza, Gannon University Dr. Karinna Vernaza joined Gannon University in 2003, and she is currently a Professor in the Mechanical Engineering Department and Associate Dean of the College of Engineering and Business. She earned her Ph.D. and M.S. in mechanical engineering from the University
stopping short of claimingthat the resultant output is a systematic review” (p.102). As for the differentiated characteristicsof systematized reviews, they described that a systematized review typically omits the step ofquality appraisal with a smaller set of eligible articles but still involves a systematic search,review, and synthesis process. Also, they mentioned that a systematized review can be conductedby one researcher rather than a research team. As a systematized review, this study followedBorrego, Foster, and Froyd (2014)’s steps in conducting a systematic review: identifying a scopeand research questions, defining inclusion criteria, finding and cataloging sources, critique andappraisal, and synthesis. However, this study did not
Paper ID #25824Advancd Design and Fabrication of Prosthetic and Medical DevicesDr. Gaffar Barakat Gailani, New York City College of Technology Dr. Gailani is an associate professor in the Dept. of Mechanical Engineering and Industrial Design Tech- nology. Received his Ph.d in Mechanical Engineering from the City University of New York in 2009. His research work is focused on poroelasticity and its application in biomechanics, additive manufactruring, and medical devices.Dr. Andy Zhang, New York City College of Technology Dr. Andy S. Zhang received his Ph.D. from the City University of New York in 1995. He is currently the
No.1826354. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the views of the National ScienceFoundationReferences[1] D. Delgado-Bernal, "Critical race theory, Latino critical theory, and critical raced- gendered epistemologies: Recognizing students of color as holders and creators of knowledge," Qualitative inquiry, vol. 8, pp. 105-126, 2002.[2] A. Valenzuela, Subtractive schooling: US-Mexican youth and the politics of caring. Albany, NY: State University of New York Press, 2010.[3] K. S.-S. Colegrove and J. K. Adair, "Countering deficit thinking: Agency, capabilities and the early learning experiences of children of
coordinates training offered by the National Center for Women and Information Technology (NCWIT) to identify and reduce implicit bias throughout the search process. In addition, she runs a faculty devel- opment and leadership program to train and recruit diverse PhD students who wish to pursue academic positions in engineering or applied science after graduation. Dr. Sandekian earned B.S. and M.S. degrees in Aerospace Engineering Sciences at CU Boulder in 1992 and 1994, respectively. She went on to earn a Specialist in Education (Ed. S.) degree in Educational Leadership and Policy Studies in 2011 and a Ph.D. in Higher Education and Student Affairs Leadership in December 2017, both from the University of Northern Colorado
Hayashibara, Embry-Riddle Aeronautical University, Prescott Associate Professor, Department of Aerospace Engineering, College of Engineering c American Society for Engineering Education, 2019 VM High-Performance Computing for Undergraduate Engineering ProjectsINTRODUCTION Parallelized processing, or the process of solving multiple parts of a single problemsimultaneously through the use of many processors (see Fig. 1), is essential for many engineeringand scientific disciplines as projects and mathematical models continue to reach beyond thescope of what can be done by hand. From their inception in the 1960’s, these grid computing (orsupercomputing) systems have advanced so as to come in a variety of sizes
of American Society of Engineering Education AnnualConference, Vancouver, BC, June 2011.[3] M. S. Reid, “The Assessment of Ethical and Sustainable Engineering Studies inUndergraduate University Education,” Proceedings of American Society of EngineeringEducation Annual Conference, Vancouver, BC, June 2011.[4] S. Spierre, E. A. Martin, J. Sadowski, A. Berardy, S. McClintock, S. Augustin, N. Hohman,and J. G. Banna, “An Experiential Pedagogy for Sustainability Ethics,” Proceedings of AmericanSociety of Engineering Education Annual Conference, San Antonio, Texas, June 2012.[5] N. A. Andrade and D. Tomblin, “Engineering and Sustainability: The Challenge ofIntegrating Social and Ethical Issues into a Technical Course,” Proceedings of American