Paper ID #44340Board 84: A Teamwork-based Electrical & Computer Engineering IntroductoryLab CourseDr. Ying Lin, Western Washington University Ying Lin has been with the faculty of the Engineering and Design Department at Western Washington University since September 2010 after she taught for two years at SUNY, New Platz. She received her BS, MS, and Ph.D. in Electrical Engineering and MS in Applied Statistics.Prof. Todd D. Morton, Western Washington University Todd Morton has been teaching the upper level embedded systems and senior project courses for Western Washington University’s Electronics Engineering Technology
experience that closely matches that encountered by professional design engineers. And we can seek to develop those communication skills that are an inherent and vital part of engineering activity. Let us begin by examining the professional functions of an engineering technologist upon being given an open-ended design project. The ET will invariably work in a design group; will initially research the project fully; will create and consider several possible design paths; will prepare a Design Proposal and Cost Estimate that is subject to (client) approval; will carefully schedule the project work which may include prototyping; will prepare formal Progress Reports; may develop a
in the highlands of northern Ecuador with student teams responsible forevaluating local conditions, providing education to local stakeholders, and assessing the impact of theproject on both the community and the team members involved in the project. Communication of surveyresults helped the village to identify municipal project priorities that would unify the community. Thissocial process, initiated by the student visit, resulted in successful attainment of a grant to construct awater filtration facility for the community based on the water quality sampling test results and on a pilot-scale technology demonstration of slow sand filtration.IntroductionThe Tufts University chapter of Engineers-Without-Borders (EWB)1-3 was founded with two
Community Member First, Researcher Second: Tensions in Authentic Engineering Education Outreach (WIP) Yuliana Flores, University of Washington Dr. Jennifer A. Turns, University of WashingtonAbstract Community engagement and outreach in engineering education can create tensions forresearchers who are also community members, particularly when navigating dual identities andresponsibilities. This paper examines the complexities of community engagement through anautoethnographic study of a high school engineering outreach project on usability testing. Theproject, which began from personal curiosity and later connected to doctoral research, illustrateshow community
communicators, and have the skills towork globally and in multidisciplinary teams. For evaluation purposes, the Universityperiodically sends out surveys in which engineering alumni are asked about how well preparedthey perceive themselves to be for their post-graduation employment. Using the results from the2010 administration of this survey, this study seeks to answer the following questions: (1) Whatare alumni’s perceptions of their preparedness in these areas: ethics, innovation, communication,project management, global and international work, and multidisciplinary teamwork? (2) Canclusters be identified from the survey results? (3) What undergraduate engineering experienceshelped prepare them for these skills, and in what ways do they believe the
minorities and women, find projects to helpthose with disabilities immediately relevant and highly engaging. The Hands-on Experiencesin Rehabilitation Engineering Program (HERE) provides a stimulating, hands-on learningexperience while fostering mentoring among students at different ages and levels ofengineering training. The student participants – frequently from the poorest and least servedcommunities of Los Angeles, range from 6th graders in Compton, CA to graduate students andinstructors at the California State University, Los Angeles and the University of SouthernCalifornia. HERE provides direct contact between students and individuals with disabilities inthe context of team design projects. Projects often build upon earlier student work, with
providementoring on specific topics or with teams. The most significant number of corporate volunteersare engaged in the twice-per-semester design reviews. To ensure quality deliverables, theprogram has long hosted design reviews, in which volunteers from industry serve as expertpanelists, listening to the student teams’ presentations and giving feedback and suggestions toimprove the projects and support the students’ professional development. Engaging industry indesign reviews has led to a number of positive outcomes, including translation of the moreengaged design reviewers into volunteer team advisors, closer connection with industry partnersyielding financial sponsorships, and more opportunities for students to engage with potentialemployers. As the
students for engineering work after they graduate, especially as they become“innovators (who) seek out new solutions to problems facing our society” [2] many universitiesoffer experiential coursework, such as senior design (a required team-based capstone project),and extracurriculars (e.g., Baja SAE and Design, Build, Fly competition teams). These activitiesand courses provide the collaborative, hands-on, meaningful application of engineering learningthat students need. Explicit instruction in team citizenship, shared leadership, and projectmanagement as well as the other capabilities and knowledge needed by working engineers isusually beyond the scope of these courses and experiences, yet are critical to the completeengineer. To support
Paper ID #33992Integrating Laser-scanning Technology into a Construction Engineeringand Management CurriculumDr. Chengyi Zhang P.E., University of Wyoming Dr. Chengyi Zhang is currently an Assistant Professor of Construction Management at the University of Wyoming. Before joining the UWYO, he worked as an Associate Professor of Construction Manage- ment at Eastern Kentucky University. He has over 14 years of civil engineering and construction project management experience.Prof. David Arditi, Illinois Institute of Technology Dr. David Arditi is currently Professor of Civil and Architectural Engineering at Illinois
skillsets to continue workingcollaboratively in a virtual environment, and the class was more effective at including externalstakeholders in the process.However, several challenges also became apparent. The loose structure of the course, hastyadjustment of the project scope to accommodate remote work, and loss of access to informationand resources had a significant impact on the students’ experiences. Final project outcomes werelimited by circumstances, since the second semester is focused on fabrication and test. For somestudents, the experience and expectations for the more hands-on part of the project wereparticularly impacted. Added challenges associated with grieving the loss of a final semester,graduation ceremonies, and uncertain career
annual earnings. However, minorities continue to be underrepresented in scienceand engineering fields as reported by the National Science Board, Science & EngineeringIndicators. This work-in-progress project presents our attempts to tackle the challenges andimprove undergraduate training in EE program. Considering that the next generation electricalengineers should be exposed to the latest technology and have significant technical and scientificcapabilities, deep interdisciplinary understandings, and soft skills such as self-learning abilitiesand communication competence, Cyber-physical systems (CPS)/Internet of Things (IoT), thefeasible and effective platforms to present the undergraduate EE students with various sub-disciplines of EE, are
Paper ID #32831Building a Functional Cardiograph Over Four Semesters, Part 3:Estimating Heart Rate and Respiration Rate in the Time and FrequencyDomains Using MATLABDr. Gail Baura, Loyola University Chicago Dr. Gail Baura is a Professor and Director of Engineering at Loyola University Chicago. While creating the curriculum for this new program, she embedded multi-semester projects to increase student engage- ment and performance. Previously, she was a Professor of Medical Devices at Keck Graduate Institute of Applied Life Sciences, which is one of the Claremont Colleges. She received her BS Electrical Engi- neering degree
is focuses on engineering pathways, career and technical education, digital thread, cyber physical systems, mechatronics, digital manufacturing, broadening participation, and engineering education. She is a Director of Mechatronics and Digital Manufacturing Lab at ODU and a lead of Area of Specialization Mechatronics Systems Design. She worked as a Visiting Researcher at Commonwealth Center for Advanced Manufacturing in Disputanta, VA on projects focusing on digital thread and cyber security of manufacturing systems. She has funded research in broadening participation efforts of underrepresented students in STEM funded by U.S. Department of Education, focusing on com- puter science and cybersecurity pathways, and
classes, and to what extent it helps students tomeet their objectives and quality of their project work. Since our university operates on a quarteracademic system, each course needs to be completed in just 11 weeks. The number of membersin each group of a capstone is either 3 or 4. One example of the project dealing with anautomated bed clearing mechanism of a 3D printing machine is presented in this paper. A groupof 4 students developed two ideas of this system. The design details of one of these ideas ispresented in this paper. The 3D printer in this example uses Fused Deposition Modelling (FDM)process. Many automotive, aerospace and other sectors are focusing on using functional 3Dprinted parts to either reduce the weight or to replace metal
of their organization offers classes to teach art to their students. Because of the range in disabilities of their students, traditional easels did not satisfy their needs. Thus, in the Fall of 2016, the My Possibilities Art Table project began. The objective of this project is to develop a motorized easel (i.e. art table) that will allow My Possibilities’ students to self-sufficiently operate the table. The team solved this problem by developing an art table that would be wheelchair accessible, contain simple controls, and include vertical and rotational motion. In order to deliver the finalized product, the team segmented the system into subsystems to improve the design process. These systems included a
acollaborative environment play an important role for students to learn and apply knowledge. Inthis paper, one project sponsored by an industrial company through the Sustainable FuturesInstitute (SFI) at Michigan Technological University serves as an example of how research insustainability can stimulate interdisciplinary collaboration and can improve graduate studentlearning in terms of the system approach, discovery of new knowledge across disciplines, criticalthinking, and overall educational experience. It was also found that the sustainability projectsand interdisciplinary collaboration stimulate high quality scholar articles and continuouscollaboration.IntroductionAs the world faces increasing threats to the long-term health of the environment
initial team building activity. Many of the designs were entered in a competition to raisemoney for Pennies for Peace (an organization that builds schools in Pakistan and Afghanistan).The students completed a basic statistical analysis on the funds collected and summarized theresults. In ENG1101, students were introduced to the engineering design process as theyprogressed through an eight-week, design/construct, team-based project that focused on greenengineering. Design constraints for the project imposed a 50% lower limit on post-consumermaterials used in construction, and the student teams were instructed to keep the environmentalimpact of their design very much in mind from the beginning of the design process and as theymoved through to
2006-306: NASA ADMINISTRATOR’S FELLOWSHIP PROGRAM (NAFP): PANELDISCUSSION AND FELLOW PRESENTATIONSMelissa Green, United Negro College Fund Special Programs Corp Melissa C. Green, Ph.D. Acting Director, Division of Science and Technology Programs United Negro College Fund Special Programs Corporation (UNCFSP) 2750 Prosperity Avenue, Suite 600 Fairfax, VA 22031 Dr. Green currently serves as the Director of the Division of Science and Technology Programs at the UNCFSP. In this position, she provides expert leadership in areas of effective project and grant management, strategic resource development and capacity building. A former research scientist, she has effectively
Paper ID #19543Student Interns Work to Activate First Floor SpacesProf. Charlie Setterfield, Sinclair Community College Charlie Setterfield is a Professor of Architectural Technology at Sinclair Community College in Dayton, Ohio. With more than 20 years experience in the architectural and construction industries, including responsibilities in all aspects of architectural project delivery and construction management, Setterfield brings real-world experience to the classroom. Setterfield’s courses focus on BIM, IPD, materials and means of construction, ”green building”, professional practice and building codes. As a Plans
Paper ID #27704Middle School STEM Teachers’ Understandings of Computational Thinking:ACase Study of Brazil and the USAMrs. Cristina Diordieva, Texas Tech University Cristina Diordieva is the Project Coordinator for the World MOON Project, and at the same time, she is a doctoral candidate majoring in Educational and Instructional Technology and minoring in Bilingual Education programs in the College of Education at Texas Tech University. She earned a BA majoring in French and minoring in Linguistics in the College of Arts and Sciences at Texas Tech University. She is highly interested conducting research within
aspossible while remaining understandable. They must go deep enough into the subject to allowstudents to recognize the ultimate goal of industrial engineering, to increase efficiency, withoutbecoming too technical for a young audience. A practical way to achieve this balance is throughthe modification of successful classroom assignments. This work will discuss several activitiesthat have been successfully used for K-12 student outreach at the University of Arkansas and arebased upon undergraduate class exercises. Each project will be presented in detail along with itscorresponding course assignment in order to motivate the exchange of creative ideas and developa framework for the adaptation of additional outreach activities.1. IntroductionMany
, Arts and Social Sciences and the School of Architecture + Planning beganleading efforts jointly with engineering faculty to develop short modules. There were 25 suchmodules implemented starting Fall 2018, Spring 2019 and Fall 2019, specifically in Ethics,Creative Thinking, Critical Thinking, and Self-learning. We describe how those moduleswere developed and piloted, how their efficacy was assessed, what were the lessons learnedfrom their implementation, and implications for the future. One of the key findings is that theWays of Thinking should be more integrated into the students’ project work in NEET. Weconclude by describing our plans for further integration of the Ways of Thinking into NEET,including their rigorous assessment to optimally
the University of Oklahoma to improve undergraduatemechanical engineering education integrating 3D printing technologies and advanced materials,emphasizing two core topics: (i) design and manufacturing of 3D printing systems and (ii) 3Dprinting and mechanical characterization of nanocomposites. The specific instructional objectivesare to improve students’ understanding of key materials, manufacturing, and mechanics conceptsby 3D modeling and 3D printing of multifunctional polymers and nanocomposites. The integrationof advanced manufacturing and advanced materials is carried out in two consequentialundergraduate projects: (i) development of direct-extrusion based 3D printing system; and (ii) 3Dprinting and characterization of nanoparticles
Martinson Department of Electrical Engineering Florida Atlantic University, Boca Raton, FL 33431 E-mail: ravivd@fau.edu 561 297 2773Abstract This paper describes an experience of working on a research project at Florida AtlanticUniversity. It is unique in the sense that the working settings are different from an ordinaryresearch project, and the intellectual property agreement is different from a standard universityone. We have been working with a private investor and entrepreneur who came with the originalidea. He has been very involved in the project with some business, humanitarian andenvironmental goals in mind
innovative experiences include modifying course syllabiacross many technical areas, focusing on the individual learning styles that generate interestand enthusiasm in students, overcoming the inertial of established grading processes that donot recognize or reward exceptional teamwork, and linking with funded projects and relatedproposals supporting work up to the graduate level.The way that Cal Poly has been meeting the above challenges has been unique and rewarding,yet still contains risk relative to accreditation. These risks are discussed relative to the nextaccreditation visit where the department hopes to win approval for its innovative approach tocurriculum development.The Educational ChallengeAbout some topics perhaps too much has been
Technology Illinois Technical College Temple No.2 Adult Education Classes Umm Al- Qura, College Of Engineering, School of Islamic Architecture, Kingdom of Saudi Arabia Florida A&M University, College of Engineering, Sciences, Technology and Agriculture Project Area Coordi- nator, Construction Engineering Technology Florida A&M University College of Architecture, Master Thesis Reviewer Academic Administration: Interim Director of Division of Engineering, CESTA 1996-98 Program Area Coordinator, Construction Engineering Technology Page 23.568.1 Related Membership Organizations: American Institute
. Page 23.767.1 c American Society for Engineering Education, 2013 Integrated Service-Learning: Student PerspectivesAbstractService-Learning (S-L) has been integrated throughout a College of Engineering at theUniversity of Massachusetts Lowell, a mid-size state university, for eight years. The S-Lprogram has been supported by three grants from the National Science Foundation. In this effort,the S-L projects are hands-on experiences in core courses of every engineering department,aimed at responding to community needs. The community partners can be local, national orinternational. Most of the S-L projects require the students to assess the engineering componentsof community needs, to design solutions
Engineering Courses among Institutions in New Mexico AbstractThis paper presents a two-year pilot project involving cross-institutional collaborations amongthe University of New Mexico (UNM), Northern New Mexico College (NNMC), and CentralNew Mexico Community College (CNM). The primary objective of this project is to leveragethe limited resources available in New Mexico (NM) to provide quality STEM undergraduateeducation to a large student population. The immediate goal is to develop a pedagogy that allowsfor demonstrable and repeatable success in this environment using a few targeted courses, withthe longer-term goal of expanding the results of this research across all higher
and a Ph.D. in Mechanical and Aeronautical Engineering from the University of California Davis in 2006. Dr. Schmitz spent four years as a post-doctoral researcher and project scientist at Davis before coming to Penn State. He is an expert in rotary wing aerodynamics with an emphasis on vortical flows. His research program embraces the areas of wind turbine aerodynamics and rotorcraft aeromechanics. Current activities include wind farm wake modeling, icing on wind turbines, rotor hub flows, and rotor active control. Page 23.170.1 c American Society for Engineering Education, 2013
will trace the evolution of partnership networks at globally engaged engineering programs atfour universities using discourse analysis.2 I reviewed all publicly available documentation thatdetailed the development of partnerships that sprung from assorted signature projects todetermine how discourse models influenced building partnership networks. I will first detail eachof the four programs, describing their philosophies on how engineers should undertakecommunity engagement. Next, I will discuss an early signature project of each program. Then Iwill highlight how the program’s philosophy about community engagement affected how itpursued partnerships. Lastly, I will discuss implications of this research for engineeringeducators seeking to