Clemson University. She has over 30 years experience in project and program evaluation and has worked for a variety of consulting firms, non-profit agencies, and government organizations, including the Rand Corporation, the American Association of Retired Persons, the U.S. Department of Education, and the Walter Reed Army Institute of Research. Since 2004, she been a member of the NSF-funded MIDFIELD research project on engineering education; she has served as a Co-PI on three research projects, including one on transfer students and another on student veterans in engineering.Dr. Joyce B. Main, Purdue University-Main Campus, West Lafayette (College of Engineering) Joyce B. Main is Assistant Professor of Engineering
theatre. If we reframe day-to-dayinteractions as offers, it’s easy to spot effortless ungenerous offers and their effects. We all knowthe feeling of being asked, “How was your day?” and reluctantly trying to create and edit asatisfying narrative of our day for another’s entertainment and edification; our return offer ismost frequently an uninspired “fine”.When we reframe ours’ and our students’ interactions together as offers, a litany of activelearning stumbling blocks take on new clarity. An excellent example of this was shared by Dr.Raquell Holmes, who led a group of four students to write a book on cell modeling over multiplesemesters. Intentionally, this project required a lot of stretching on the part of the undergraduategroups. They were
. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and associate professor at the University of New Mexico in the Organization, Information & Learning Sciences program and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutionizing Engineering Departments project. She was selected as a National Academy of Education / Spencer Post- doctoral Fellow and a 2018 NSF CAREER awardee in engineering education research. Dr. Svihla studies learning in authentic, real world conditions; this includes a two
focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on retention and motivation, the dynamics of cross-disciplinary collaboration in both academic and industry design
components in the engineering professionand includes a multi-disciplinary capstone design experience for which teams are eligible forstudent venture grants administered by the institution. Several multi-year grants havestrengthened the program through workshops, keynote speakers, faculty curriculum awards,student venture grants, and faculty incentives to work with industry sponsored student teams.Specifically, the College of Engineering received an invitation to participate as part of a larger Page 23.266.2initiative to develop the Kern Entrepreneurship Education Network (KEEN). The invitation alsoprovided funding to develop and integrate
and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and serves on the college’s Capstone Design Committee. Much of his research involves design education pedagogy, including formative assessment of client-student interactions, modeling sources of engineering design constraints, and applying the entrepreneurial mindset to first-year programming projects through student engagement in educational software development. Estell earned his BS in Computer Science and Engineering degree from The University of Toledo and both his MS and PhD degrees in computer science from the University of Illinois at Urbana-Champaign.Dr. Micah Lande, South
been used by researchers to understand how teaching andlearning occur in classrooms [22]-[27]. In the context of engineering education, classroomobservations have become more common to conduct research related to curricular practices [28].As our research questions centered on how engineering practices were taught and understandinghow classroom time was utilized, classroom observations served as an ideal method throughwhich to collect data.To guide the data collection, the project leadership team (EM, LL, JLM, and SD) developed anditerated an observation protocol. The observation protocol consisted of 35 practices, which weredrawn from literature on engineering competencies [1], [5], insights from student interviewsprobing the emphasized skills
practices and intersections of motivation and learning strategiesDr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work
the purpose of major advising is to assist the student intheir journey from high school graduate to competent entry-level technical professional. Theexemplar advisor engages in dialogue with the student, providing a perspective of the academicprogram as a process of socialization into the profession, rather than a series of disconnectedcourse requirements.In other words, the advisor’s job is to help the students understand what it means to be anengineer. Rather than relegating the professional issues to the capstone project or the internship,it is the goal of the advisor to facilitate the student’s learning about what is the role of anengineer in society, why is the entire curriculum necessary to produce the kind of engineer theinstitution is
, following the completion of each assignmentwill be able to read the summaries of the discussions created by the students in the various groupsand look for common misconceptions which can help tailor the future direction of the course or,possibly, the way the course is taught in future offerings.4. Prototype SystemWe are currently in the process of implementing a prototype version of the PICOLA system. Thisis the design/implementation project in the capstone design course in our Computer Science andEngineering (CSE) program. Thus the students who will work on the prototype are CSE majorswho are in the final semester of their programs. Most of these students have extensive experience inimplementing large scale software systems as part of their
project. McMasters (2006) highlights four clusters ofskills as being important to qualified engineers: foundational technical skills, professional,engineering, and business skills. Broadly speaking, there are technical and professional skills;and to combat the dualism embedded within these two domains, socio-technical skills are used torepresent the nature of engineering competencies (Faulkner, 2007). Another line of research1 https://www.abet.org/wp-content/uploads/2018/03/C3_C5_mapping_SEC_1-13-2018.pdffocuses on how to facilitate the competency development of engineering students; andsummaries of some findings from this line of research can be found in two review papers(Ebrahiminejad, 2017; Shuman, Besterfield-Sacre, & McGourty, 2005
society through investigating community-based leMr. William Cohen, Ohio State University William Cohen is a Lecturer for the Fundamentals of Engineering program at The Ohio State University: a 2 semester course sequence for first-year engineering students focusing on programming in MATLAB, computer aided drawing in SolidWorks, and a semester long design-build-test project. William has also received his B.S. in Chemical Engineering and M.S. in Nuclear Engineering from Ohio State.Dr. James Edward Toney, Ohio State University James Toney earned the Ph.D. in physics from Carnegie Mellon University in 1998 and the B.S. in electri- cal engineering from Rensselaer Polytechnic Institute in 1984. He is a Senior Lecturer in the
to four-year universities to studyengineering bring a diverse range of experiences and perspectives, which greatly contribute to thefield of engineering and help national and regional workforce development. However, thesestudents face specific challenges, referred to as the vertical transfer penalty, when they transfer tofour-year universities. This can lead to lower completion rates for community college starterscompared to students who start at four-year universities. The issue seems to be related to factorsregarding the students' experiences, institutional characteristics, and geographic location. Thisstudy marks the initial stage of a comprehensive research project aiming to compare historicaltransfer student data over the past two
Paper ID #37270Can Oral Exams Increase Student Performance andMotivation?Nathan Delson (Professor) Nathan Delson is a Teaching Professor at the University of California at San Diego. His research interests include robotics, biomedical devices, and engineering education. He teaches introductory design, mechanics, mechatronics, capstone design, medical devices, and product design & entrepreneurship. His interests in design education includes increasing student motivation, teamwork, hands-on projects, and integration of theory into design projects. In 1999 he co- founded Coactive Drive Corporation (currently
they are implemented, such pedagogies can directly or indirectly address both 5the chilly climate and faculty teaching style issues; by “warming” classroom climates, thecampus climate can begin to shift [22].Other ways to (in)directly address climate and faculty issues include providing challengingmaterial while also structuring in support for learning, creating hands-on research experiences(preferably with positive faculty mentoring), and developing or improving first-year seminars,capstone projects, learning communities, internships in industry, and access to women-focusedorganizations such as the Society of Women Engineers [22]. It is
, her research efforts have focused on the development and mechanical evaluation of medical and rehabilitation devices, particularly orthopaedic, neurosurgical, and pediatric devices. She teaches courses in design, biomechanics, and mechanics at University of Delaware and is heavily involved in K12 engineering edu- cation efforts at the local, state, and national levels.Prof. Joshua A. Enszer, University of Delaware Dr. Joshua Enszer is an assistant professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical
design approach places emphasis on deep consideration and inclusion ofstakeholders and context in design decision making. Further, when taking a humanity-centeredapproach, designers consider how their own identities shape design approaches and outcomes,constantly reflect and analyze on𑁋𑁋and adjust𑁋𑁋their role in a design process relative to thepeople and communities who have a stake in the project, and account for impacts on futuregenerations. As a humanity-centered approach, socially engaged design thus foregrounds peopleand society (e.g., users, stakeholders, communities), context (e.g., environmental, political,economic, cultural), and designer positionality (relative to the problem, solution, and process)throughout design work [20]. This
companies MatriLab and NovaScan. Mr. Thompson was part of the corporate new ventures group at Hughes Electronics where he worked with early stage companies in consumer electronics, broadband services and entertainment. His technology background includes managing software development projects and designing and launching communica- tions satellites as a system engineer at Hughes Space and Communications. c American Society for Engineering Education, 2018 Paper ID #21674 Mr. Thompson serves on the board of the Wisconsin Technology Council and has been active in fostering entrepreneurship in the Milwaukee
learning communitieshave grown during the 1990s as documented by the work by Gabelnick et. al. 3 and the NationalLearning Communities project. 4 As evidenced by the diversity of implementations of learningcommunities in engineering curricula across the Foundation Coalition, learning communitiesprovide a concept that can be adopted and adapted by many different engineering programs tooffer increased support for the students who are enrolled in very challenging programs.At A&M, a LC is a group of students, faculty and industry that have common interests and workas partners to improve the engineering educational experience. LCs value diversity, areaccessible to all interested individuals, and bring real world situations into the
drop resulted from the usual high attrition rate typical in Associate degree programs. 25Rising prices initially didn't affect upper division ET title availability at 4-year colleges either(weren’t many anyway), but the publishing philosophy resulting in fewer small market titles suredid! Annual enrollments were 3,000 to 6,000 in N. America at most for almost all upper divisionET courses – including proprietary school (DeVry) & Canadian technical college students. 26 Sowhen publishers stopped approving proposals projecting first year sales of fewer than 4-5,000copies – even though (i) technology title sales continued to hold up well in Years 2-5 (unlikemost disciplines), & (ii) short black & white titles were cheap to produce &
students with only 13% women, the CS degree hasstarted in fall 2021 and has 122 students enrolled with only 18% women, as of spring 2022.Participation in the WiC activities is voluntary and optional for all the students in the targetgroup.3.2. Researchers DemographicThe research study and WiC initiatives were conducted by the two women faculty members whoare both tenured. One of the faculty members (M. Villani) is a senior department member whohas been teaching for the past 20 years. She has taught the senior capstone project course forover ten years and has prior 15 years of executive level industry and consulting experience. Theother faculty member (I. Aydin) is in her mid-career, teaching CS1 and CS2 courses as well asupper-level technical
engineering topics across the curriculum. • Pick a file from our set of templates. Play with the interface and reflect on how to adapt for your purposes: lecture/in-class activity, homework, group projects, other.Conclusions and reflections for the futureThe workshop and materials described in this paper were developed to provide faculty withresources for incorporating modern computational tools and computational thinking into theirclassrooms through lecture materials, interactive textbook-like content, case studies, in-classactivities, homework, and course projects. We focused on instructing and equipping chemicalengineering faculty rather than students to scale our efforts to reach the target student audiencefor the overall goal of
institute in Singapore right after. She spent the next four years in developing navigation technologies for underwater robotics that were used to understand environmental issues in the coastal regions of Singapore. She was always interested in the education aspect of engineering that led her to take up a position as a lecturer in Singapore Polytechnic. Rubaina spent the next five years developing interdisciplinary engineer- ing courses, designing activities to promote engagement and motivation in the classroom and supervise students in their final year projects mainly in robotics. This led to her thinking about issues related to engineering education and pursuing a degree in education
William Palm is Assistant Professor of Engineering at Roger Williams University, where he teaches Engi- neering Graphics and Design, Computer Applications for Engineering, Machine Design, Manufacturing and Assembly, Biomechanics, and Capstone Design. He previously worked as a product design engineer and consultant and taught at the U.S. Coast Guard Academy and Boston University. He holds a PhD in Mechanical Engineering from MIT and is licensed as a Professional Engineer in the Commonwealth of Massachusetts. c American Society for Engineering Education, 2016 Can a Five Minute, Three Question Survey Foretell First-Year Engineering Student Performance and Retention?AbstractThis
an array of active learning approaches that pique their interest and spark excitement about the possible outcomes for their students. After initial exposure to new activities, contextual questions naturally arise for educators, and a clear understanding of the essential features for successfully implementing a teaching strategy becomes necessary. Reflection activities represent one approach for active learning that educators reasonably have questions about before adopting the approach. Reflection is a topic that can have various meanings. For this project, reflection was conceptualized with the following definition: looking back on the past experience(s), to interpret and make meaning of those experiences in order to plan for the future [1
interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, liberatory maker spaces, and a RED grant to increase pathways in ECE for the professional formation of engineers.Prof. Thomas Martin, Virginia Tech Tom Martin is a Professor in the Bradley Department of Electrical and Computer Engineering at Virginia Tech, with courtesy appointments in Computer Science and the School of Architecture + Design. He is the co-director of the Virginia Tech E-textiles Lab and the associate director of the Institute for Creativity, Arts, and Technology. He received his Ph.D. in Electrical and
communications,and senior capstone design project courses, teaching laboratories and projects helpedimprove student participation, got the students actively involved and excited about theprojects and the material being taught, motivated the students to better master coursecontent and taught the students to learn to think and reason more clearly, accurately,relevantly, logically, rationally, ethically and responsibly.This paper discusses how the judicious, sensible and affable use of the Socratic Methodin the aforementioned educational settings facilitated the development of students whoare learning to possess the basic skills of thought and reasoning such as the ability to:identify, formulate and clarify questions; gather relevant data; identify key
necessary flowrate,composition and property profiles. These results are uploaded using the available coursemanagement software. Students also must develop a spreadsheet where column diameter isdetermined at four different points in the column (tray below the condenser, tray above thereboiler, trays adjacent to the feed tray). This spreadsheet, if correct, is then available for themto use when sizing columns for their semester design project. The necessary data (flowrates,surface tension, vapor and liquid density) required for the diameter calculation are obtained fromtheir generated column profiles. Page 23.468.16Comprehensive Design ProjectDuring
supported Math Science Partnership, in developing modules for Physics and Chemistry and also a course on Engineering Capstone Design. He has also co-developed a Materials Concept Inventory for assessing fundamental knowledge of students in introductory materials engineering classes. He is currently working on NSF projects to develop a learning trajectory for macro-micro concepts in materials science education as well as materials science modules which integrate interventions for student misconceptions using a 5E (engage, explore, explain, extend, evaluate) pedagogy with technological tools of Just-in-Time-Teaching and Classroom Clicker questions.Jacquelyn Kelly, Arizona State University
, Senior Capstone: Production Laboratory, and Senior Project courses, along with theIndustrial Internship Program.This integration has occurred in various components of these courses. The textbook readings,lectures, and discussions were revised in order to emphasize the findings from the study. Inaddition homework assignments, case studies, and real world experiences derived from the studywere included as individual or group exercises.Homework assignments and case studies related to performance measurements were developedand implemented for the aforementioned senior courses. In each case, the students are to applytheir knowledge of performance monitoring techniques to the particular problem and analyzetheir effectiveness, suggest improvements, and