Paper ID #32829Introducing Communications to High School Students by Leveraging Zoomasa Communications PlatformProf. Curt Schurgers, University of California, San Diego Curt Schurgers is an Associate Teaching Professor in the UCSD Electrical and Computer Engineering Department. His research and teaching are focused on course redesign, active learning, and project- based learning. He also co-directs an undergraduate research program, Engineers for Explorations, in which undergraduates spearhead real-world engineering challenges that impact the world of exploration and resource conservation. Curt Schurgers received his B.S
. Sampson, J. Grooms and J. Walker, “Argument-Driven Inquiry as a Way to Help Students Learn How to Participate in Scientific Argumentation and Craft Written Arguments: An Exploratory Study,” Science Education, vol. 95, no. 2, pp. 217-257, Mar., 2011. doi: 10.1002/sce.20421[25] J. P. Walker and V. Sampson, “Learning to Argue and Arguing to Learn: Argument‐ Driven Inquiry as a Way to Help Undergraduate Chemistry Students Learn How to Construct Arguments and Engage in Argumentation During a Laboratory Course,” Journal of Research in Science Teaching, vol. 50, pp. 561-596, May, 2013. doi: 10.1002/tea.21082[26] Bill and Melinda Gates Foundation, “Vaccine Delivery,” gatesfoundation.org, 1999-2018. [Online]. Available: https
Paper ID #19273Embedding YouTube Videos and Interactions in PowerPoint Using Office Mixfor Adaptive Learning in Support of a Flipped Classroom InstructionProf. John M. Santiago Jr, Colorado Technical University Professor John Santiago has been a technical engineer, manager, and executive with more than 26 years of leadership positions in technical program management, acquisition development and operation research support while in the United States Air Force. He currently has over 16 years of teaching experience at the university level and taught over 40 different graduate and undergraduate courses in electrical engineer
Paper ID #22574Cultivating the Next Generation: Outcomes from a Learning Assistant Pro-gram in EngineeringDr. Ying Cao, Oregon State University Postdoctoral Scholar in STEM education.Dr. Christina Smith, Brown University Christina Smith is the Assistant Director for Undergraduate Instructional Development at the Sheridan Center for Teaching and Learning at Brown University. She received her PhD from Oregon State Uni- versity in chemical engineering. Her research focused on how the beliefs of graduate students around teaching and learning interact with and influence the environments in which they are asked to teach. She
Paper ID #12753The LAWA technique implemented in a course in nanomedicineLindsey Taylor Brinton, University of Virginia Lindsey Brinton is a PhD candidate in Biomedical Engineering at the University of Virginia. She received her B.S. in Biomedical Engineering and B.A. in French from the University of Virginia in 2009. Her dis- sertation research is in the laboratory of Dr. Kimberly Kelly and focuses on the development of liposomes targeted to the stromal compartment of pancreatic adenocarcinoma. She has served as a teaching assistant for Calculus I and Physiology II as well as a co-instructor for Nanomedicine.Colleen T
interests centeron in-situ and laboratory testing of saturated and unsaturated soils. Dr. Miller has served as co-PIon the Sooner City project, where he has helped develop the protocol for integrating projects acrosscourses. In 1998 he received the George W. Tauxe Award for Outstanding Teaching, as chosen bythe ASCE and Chi Epsilon student chapters.K.K. (Muralee) Muraleetharan. Dr. Muraleetharan is an Associate Professor in the School of CivilEngineering and Environmental Science at the University of Oklahoma. He received his B.S. fromthe University of Peradeniya in Sri Lanka, and his M.S. and Ph.D. from the University of Californiaat Davis, all in Civil Engineering. He is a registered professional engineer and a registered geotech-nical engineer
Colombia, working with undergraduate and graduate students. My doctoral research focused on electronic devices for recording and stimulation of Obstructive Sleep Apnea, obtaining a Cum Laude distinction and experience in neuromodulation. I am currently a postdoctoral fellow at the University of Texas at Austin working on the development of portable focused ultrasound neurostimulation technologies in the laboratory of Dr. Huiliang Wang, an expert in optogenetics and sonogenetics.Prof. Huiliang Wang, University of Texas at Austin Huiliang (Evan) Wang is an Assistant professor at the Biomedical Engineering department at the University of Texas at Austin (UT Austin). His research is on neuro-engineering technologies
Paper ID #9697Reinforcing a ”Design Thinking” Course by Restructuring Student-InstructorInteractionsDr. Ang Liu Dr. Liu is a Postdoctoral Teaching Fellow and Manager of Viterbi iPodia Program at University of South- ern California.Dr. Stephen Y. Lu, University of Southern California Dr. Lu is the David Packard Chair in Manufacturing Engineering, Professor of Aerospace and Mechanical Engineering, Computer Science, and Industrial and Systems Engineering, and Director of Viterbi iPodia Program, at University of Southern California
Paper ID #12024Using Robotics as the Technological Foundation for the TPACK Frameworkin K-12 ClassroomsAnthony Steven Brill, NYU Polytechnic School of Engineering Anthony Brill received his B.S. degree in Mechanical Engineering from the University of Nevada, Reno, in 2014. He is currently a M.S. student at the NYU Polytechnic School of Engineering, studying Me- chanical Engineering. He is also a fellow in their GK-12 program, promoting STEM education. He conducts research in the Mechatronics and Controls Laboratory, where his interests include controls and multi-robot systems.Dr. Jennifer B Listman, NYU Polytechnic School
projector. There were visitsto other campus locations during the SLI, including an orientation to the use of Googledocs atone of the technology laboratories on the main campus. All participants had access tohardware/software that was used, and the main meeting space was set up for wirelessnetworking. Content specific instruction was delivered by lecture format, modeling anddemonstrating, and through collaborative learning. Teaching styles that were observed includedstructured instruction, inclusion style, guided discovery, and convergent discovery. Instructionalstrategies that were used extensively were collaborative learning and hands-on learning.Occasionally independent work, lecture, simulations/demonstrations, and integration oftechnology were
rarely thevehicle for developing EM. Entrepreneurial mindset could be incorporated into a CAD coursethrough smaller projects that address specific e-KSOs. This strategy would fit will into programsattempting to develop EM across the entire curriculum.All engineers need the ability to learn new skills independently and teach these new skills to theircolleagues. Incorporating EM-related projects into undergraduate courses provide opportunitiesto develop and practice these abilities. For example, a project first described by Levert [7] aimedto introduce engineering students to dimensioning and tolerancing standards, while addressingeKSO 1l (“Take ownership of, and express interest in topic/expertise/project”) and 4d (“Be ableto teach and learn from
understanding of the fundamental concepts andpractical applications of energy conversion systems, which are critical for advanced research anddevelopment in mechanical engineering. According to a recent study by the American Society forEngineering Education (ASEE), students who take energy conversion courses are more likely tobe interested in pursuing graduate studies in mechanical engineering, as compared to those whodo not take such courses (Liang et al., 2021).To enhance student participation, engagement, and retention in the energy conversion course,novel teaching techniques have been proposed and implemented. These techniques focus oncreating an interactive and collaborative learning environment that enables students to applytheoretical concepts
diverse group in gender, race or ethnicity, age,teaching experience, and STEM disciplines taught. All the participants had earned a Ph.D. in theSTEM field in which they taught and were full-time faculty at their institution.The objectives of the RET were to: (1) Increase participants’ research skills and practicalknowledge of CPS; (2) Increase participants self-efficacy in creating and implementinglaboratory-based investigations and problem-solving opportunities using cutting-edge technologywith students in the classroom; and (3) Help bridge the preparedness gap between what isexhibited by community college transfer students and what is expected by university engineeringfaculty.Research focusCyber Physical Systems (CPS) are state of the art
Chemical Engineering. She coordinated STEM outreach for the Leonard C. Nelson College of Engineering and Sciences.Dr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Teaching Associate Professor and Director of Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely with the departmental leadership to manage the undergraduate program including
Paper ID #12635What a Systematic Literature Review Tells Us About Transportation Engi-neering EducationDr. Rhonda K Young, University of Wyoming Rhonda Young is an associate professor in the Department of Civil and Architectural Engineering at the University of Wyoming since 2002 and teaches graduate and undergraduate classes in Traffic Operations, Transportation Planning, Transportation Design and Traffic Safety. She completed her master and PhD degrees in Civil Engineering at the University of Washington and undergraduate degree from Oregon State University. Prior to joining the academic field, she worked as a
projects wouldbe lengthy and time consuming, and, therefore, will become part of experiential learning projectsimplemented outside the traditional lecture course environment.Bibliography[1] D. Van den Bout. The practical Xilinx Designers Lab Book, Prentice Hall, 1999[2] D.G. Beetner, H.J. Pottinger, and K. Mitchel, “Laboratories Teaching Concepts in Microcontrollers and Hardware-Software Co-Design,” 30th ASEE/IEEE Frontiers in Education Conference, pp. S1C/1-5, 2000[3] P. J. Ashenden. Gumnut Processor: Digital Design: An Embedded Systems Approach using VHDL, Morgan Kaufmann Publications, 2008[4] Kleinfelder, W., D. Gray, and G. Dudevoir. "A hierarchical approach to digital design using computer-aided design and hardware description
Bruntland commission’s definition which defines it “as meeting the needs of the present without compromising the ability of the future generations to meet their own needs.” The concept and practice of sustainability has become very important in engineering profession. We conducted a project to determine and unravel the current state of integration of sustainability in engineering education at the colleges and universities across the nation. We conducted a survey and collected data from universities in US on teaching of the subject of sustainability in their curricula. We asked questions on what topics of sustainability were integrated in those courses. We also researched on identifying several key activities and indicators in this study. This paper
past. One thing iscertain; this hands-on laboratory approach to a traditional lecture based class works well and willbe continued.Bibliography1. Allen, R. H. (2002). Impact teaching: Ideas and strategies for teachers to maximize student learning. Boston: Allyn & Bacon.2. Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. (ASHE-ERIC Higher Education Report No. 1). Washington, DC: George Washington University.3. Crabtree, D. E. (1972). An Introduction to Flintworking. Occasional Papers No. 28. Pocatello, Idaho: Idaho State University Museum.4. Crawford, A. E., Saul, E. W., Mathews, S., & Makinster, J. (2005). Teaching and learning strategies for the thinking classroom
, University of Wyoming. He is a senior member of IEEE and chief faculty advisor of Tau Beta Pi. His research interests include digital and analog image processing, computer-assisted laser surgery, and embedded control systems. He is a registered professional engineer in Wyoming and Colorado. He authored/co-authored several textbooks on microcontrollers and embedded systems. His book, ”A Little Book on Teaching,” was published by Morgan and Claypool Publishers in 2012. In 2004, Barrett was named ”Wyoming Professor of the Year” by the Carnegie Foundation for Advancement of Teaching and in 2008 was the recipient of the National Society of Professional Engineers (NSPE) Professional Engineers in Higher Education, Engineering
” by Young and Freedman[24]. Students of the course also attended weekly laboratory sessions where “Tutorials inIntroductory Physics” by McDermott and Schaffer [25] was used extensively. All courseactivities, including the tests, were conducted in Spanish.The E&M course uses active learning for instruction [26]. During the semester, besides the useof Tutorials, a very successful teaching strategy created by McDermott, et al. [25], the instructoruses Mazur´s Peer Instruction, a conceptual-based educational strategy [11]. He also employsproblem-solving activities using collaborative learning, conceptual building activities such asTasks Inspired by Physics Education Research (TIPER) [27] and educational technologies suchas Interactive
the Uni- versity of Oklahoma where he also taught as a visiting lecturer. He has been on the Washington State University (WSU) faculty for 37 years and for the past 23 years has focused on innovative pedagogy research and technical research in biotechnology. His 2007-2008 Fulbright exchange to Nigeria set the stage for him to receive the Marian Smith Award given annually to the most innovative teacher at WSU. He was also the recent recipient of the inaugural 2016 Innovation in Teaching Award given to one WSU faculty member per year.Kitana Kaiphanliam, Washington State University Kitana Kaiphanliam is a second-year doctoral student in the Chemical Engineering program at Washing- ton State University (WSU). Her
results of ananonymous student survey. The survey shows very positive comments about the experience. Based onusing inter-class collaboration for two quarters, we have decided to continue with the practice this yearand we will gather more information in a more detailed survey and aim to make this collaboration apermanent feature in both classes. We also plan to explore how to integrate this kind of inter-classcollaboration in additional upper division computing classes and senior projects. IntroductionCollaborative learning is an educational approach to teaching and learning that involves groups oflearners working together to solve a problem, complete a task or create a product [1]. Research showsvery
from zyBooks have shown excellent results. Course median reading rates up to 99%were observed. The interactive textbook format has also been demonstrated to help students in thelower third of the class engage in the course [7, 8, 19, 20, 25-27]. Reading participation using azyBook is also discussed in another 2019 ASEE contribution.In this contribution, an interactive textbook for teaching spreadsheets will be reviewed, readingparticipation and repetition analyzed, and successes and challenges of auto-graded problemssummarized.Materials: An interactive textbook with spreadsheetszyBooks creates interactive textbook replacements using the philosophy: Less text, more actionTM.These interactive textbooks are viewed, read, and interacted with in
. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing c American Society for Engineering
] Northrup, S. G and Burke, J.R., “A Hybrid Approach to a Flipped Classroom for an Introductory Circuits Course for all Engineering Majors”, Proceedings of the 122nd ASEE Annual Conference & Exposition, Seattle, June 2015.[8] Zhao, Y. and Breslow, L., “Literature Review on Hybrid/Blended Learning ", Teaching and Learning Laboratory (TLL) (2013): 1-22.
Paper ID #17022Accentuating the Positive: Including Successes in a Case Study Survey ClassDr. Colleen Janeiro, East Carolina University Dr. Colleen Janeiro teaches engineering fundamentals such as Introduction to Engineering, Materials and Processes, and Statics. Her teaching interests include development of solid communication skills and enhancing laboratory skills.Dr. Teresa J Ryan, East Carolina University Department of Engineering Dr. Teresa Ryan teaches mechanical engineering fundamentals such as Dynamics, Mechanics of Materi- als, Acoustics and Vibrations. She also focuses on technical communication skills within an
workforce demands. Theconcern rises from the abundance of STEM-related employment, a lack of qualifiedindividuals to fill those positions, and the fact that STEM technologies and productionplay an invaluable role in national and global economies, [4][5]. For the reasons mentioned above, significant funding, time, and resources, havebeen invested in the United States with the intent of sparking STEM interest amongyoung citizens. For example, in STEM outreach, there is a myriad of programs andactivities just within the field of robotics and automation. Examples of these type ofprograms include: FIRST, LEGO Mindstorms, VEX Robotics, MATE, SeaPerch,OpenROV, etc. Robotics is often chosen as a method to teach a broader version of STEM
. Many high-risk active learning techniqueshave been documented in recent literature, including field trips,5 peer teaching,6 class discussionson open-ended questions,7-8 hands-on manufacturing, laboratory testing,9-10 project-basedlearning,11 and cross grading and debate.12 The flipped classroom technique is also a new andeffective method of teaching13 where traditional lectures are converted to readings assigned tostudents outside of class and the class time is used for homework assignments and otheractivities. This technique was used successfully to teach sustainability in the past.14Low-risk active learning techniques have been introduced to engage students even in a lecture-based delivery, such as lecture worksheets,6 reading quizzes,7 and
Paper ID #13244Preparation of Biology Review and Virtual Experiment/Training Videos toEnhance Learning in Biochemical Engineering CoursesDr. Jacob James Elmer, Villanova University Dr. Elmer earned dual B.S. degrees in Biology and Chemical Engineering from the University of Mis- souri Rolla in 2003 and obtained a PhD in Chemical Engineering from Ohio State University in 2007. After a short posdoc at Arizona State University and some adjunct teaching at Grand Canyon University, he secured an Assistant Professorship at Villanova University in the Chemical Engineering department. He currently teaches heat transfer and several
. He is viewed as a leader in pursuing new fluids dynamics research opportunities that are becoming available shortly in the commercial sub-orbital rocket industry. He is one of three researchers selected for early flights with Blue Origin with an NSF-funded payload, and he is also launching payloads with Armadillo Aerospace, Masten Space Systems, XCOR, and Exos. Professor Collicott began activities in innovative teaching in capillary fluid physics, in STEM K-12 outreach, and in placing the positive news of university engineering education and capillary fluids re- search in the national media in 1996. In 1996 he created, and still teaches, AAE418, Zero-Gravity Flight Experiments, at Purdue. The research activities