implementation strategies of thenotebooks, we asked the following overarching research question: What are the variety of waysin which teachers implement structured engineering notebooks during an engineeringdesign-based STEM integration unit? To address our research question, we used a multiple casestudy approach and a cross case analysis based on videos of teacher implementation and theirstudents’ notebooks.Literature reviewIn science, technology, engineering, and mathematics (STEM), formative assessment is anintegral part of high-quality instruction. The Next Generation Science Standards (NGSS) expectteachers to provide multidimensional science instruction of disciplinary core ideas, science andengineering practices, and crosscutting concepts [10
Page 26.804.3expectations to reflect their current situation. In this view, students’ novice-like behaviorsmay be explained by their previous experiences in school settings: when framing a designactivity as a “classroom game” 25 or “doing school” 26, students may treat designproblems as well-defined textbook problems with clearly articulated initial states,identifiable collections of known variables, and set procedures for generating solutions27,28, 29 . Students may also draw from their other experiences (e.g., imaginative play,storytelling, problem solving) as they are making sense of an engineering design activity.In these instances, incorporating fantastical technologies might be justifiable; while inothers, navigating complex
director of engineering education research at the Tufts University Center for Engineering Educational Outreach, where her work focused on integrating engineering with science, technology, and math in professional development for K-12 teachers. She also directed the Women’s Experiences in College Engineering (WECE) project, the first national, longitudinal, large-scale study of the factors that support young women pursuing engineering degrees. Cunningham is a Fellow of the American Society for Engineering Education and was awarded the 2014 International Society for Design and Development in Education Prize. She holds B.A. and M.A. degrees in biology from Yale and a Ph.D. in Science Education from Cornell University.Dr
to examine the culture for women and underrepresented minorities in 22 engineering colleges nationwide. She also directs the external eval- uation for the National Center for Women & Information Technology (NCWIT). In addition to her lead- ership in the office, Dr. Litzler is a member of the American Society for Engineering Education (ASEE) and a Board Member of Women in Engineering ProActive Network (WEPAN). Her research interests include the educational climate for students in science and engineering and gender and race stratification in education and the workforce.Ms. Cate Samuelson, University of Washington Cate Samuelson is a Doctoral Candidate in Education and Leadership Policy Studies at the University
Paper ID #34990Activating and Engaging Students in Online Asynchronous ClassesDr. Nicolas Ali Libre, Missouri University of Science and Technology Nicolas Ali Libre, PhD, is an assistant teaching professor of Civil Engineering at Missouri University of Science and Technology. He received his BS (2001), MS (2003) and PhD (2009) in civil engineer- ing with emphasis in structural engineering, from University of Tehran, Iran. His research interests and experiences are in the field of computational mechanics, cement-based composite materials as well as in- novative teaching techniques. Dr. Libre is the manager of Materials
Paper ID #13389UTILIZING THE EFFECT OF AIR SPEED TO IMPROVE AUTOMOBILEMOVING PERDORMANCEDr. Masoud Fathizadeh, Purdue University Calumet (College of Technology) Masoud Fathizadeh – PhD, PE Professor Fathizadeh has been with the Department of Electrical and Computer Engineering Technology Purdue University Calumet since 2001. He has worked over 15 years both for private industries and national research laboratories such as NASA, Argonne and Fermi National Laboratories. Dr. Fathizadeh has established his own consulting and engineering company in 1995 spe- cializing in power system, energy management and automation systems
Paper ID #26181A Long-Term Study of Software Product and Process Metrics in an Embed-ded Systems Design CourseDr. J.W. Bruce, Tennessee Technological University J.W. Bruce is with the Department of Electrical & Computer Engineering at Tennessee Technological University in Cookeville, Tennessee USADr. Ryan A. Taylor, University of Alabama Dr. Taylor received his Ph.D. in Electrical and Computer Engineering from Mississippi State University in 2018. He is currently an assistant professor at the University of Alabama in Tuscaloosa, Alabama. His research interests revolve around remote sensing and engineering education
AC 2010-843: PROGRAMMING FOR PRE-COLLEGE EDUCATION USINGSQUEAK SMALLTALKKathryn Rodhouse, Missouri University of Science and Technology KATHRYN N. RODHOUSE is a Computer Engineering undergraduate at Missouri University of Science and Technology. She has interests in programming and is active in Eta Kappa Nu.Benjamin Cooper, Savant LLC BENJAMIN COOPER is CTO/Managing Partner of Savant LLC. He is an entrepreneur with experience in several start-up companies. He attended Emory University and the University of California, San Diego.Steve Watkins, Missouri University of Science and Technology STEVE E. WATKINS received his Ph.D. from the University of Texas - Austin in Electrical Engineering in
Point, New York. He graduated from West Point in 1985 with a Bachelor of Science in Mechanical Engineering. He earned a Master of Science in Aerospace Engineering from the Georgia Institute of Technology in 1994 and a Ph.D. in Aerospace Engineering from the University of Kansas in 2004. He has taught courses in aeronautics, thermal-fluid systems, heat transfer, computer- aided design, and aerospace and mechanical engineering design. He is a licensed Professional Engineer and is a rated pilot in both rotary and fixed wing aircraft. Page 23.833.1 c American Society for Engineering
AC 2012-4029: INSTITUTIONAL DISCOURSES IN ENGINEERING ED-UCATION AND PRACTICENathan McNeill, University of Florida Nathan McNeill is a Postdoctoral Associate in the Department of Materials Science and Engineering at the University of Florida, where he is studying the factors that contribute to success in open-ended problem-solving. He has a Ph.D. in engineering education from Purdue University, an M.S. in mechan- ical engineering from the Georgia Institute of Technology, and a B.S. in engineering from Walla Walla University.Dr. Elliot P. Douglas, University of Florida Elliot P. Douglas is Associate Chair, Associate Professor, and Distinguished Teaching Scholar in the De- partment of Materials Science and
Session 1660 Evolution of Engineering Design Education at KIT - Technical and Cultural Aspects of Concept Transfer and Translation - Masakatsu Matsuishi, Yuko Hoshino, Wayne Sanders Kanazawa Institute of Technology Rose-Hulman Institute of TechnologyAbstractIn 1996, Kanazawa Institute of Technology (KIT) became the first university in Japan to offercourses in Engineering Design. Starting in the Fall and Winter quarters, Engineering Design I(EDI) and Engineering Design II (EDII) were taught respectively to approximately two thousandsophomore
to think [2]. Liberal arts particularly helpstudents develop professional identities, soft skills, and engage with other cultures and histories[3] convincing students of the non-neutrality of technology [4]. Yet, the means for integratingliberal arts education into high credit hour, technical engineering programs remains far from asolved problem.Some engineering educators equate liberal arts with professional skills and hope that generaleducation requirements will provide students with the necessary breadth of critical thinking skills[2]. At the other end of the spectrum, a growing number of schools are offering bachelor’s of artsdegrees in “Science, Technology, and Society” or minors in urban sustainability and similarlyintegrated topics [5
Paper ID #37296Work in Progress: Supplementing theoretical modeling with empiricaldata for improved designProf. Jennifer Bailey, Rochester Institute of Technology (COE) Dr. Jennifer Bailey is a Principal Lecturer of Biomedical Engineering at Rochester Institute of Technol- ogy, where she has taught since January of 2014. She previously taught at the University of Illinois and the University of Southern Indiana after graduation. Her interests include first year design experiences, enhancing spatial reasoning skills, and creating a student-centered learning environment.Spencer Randolph Davis ©American
Engineering (Fundamental)Our society increasingly depends on computers and digital devices. Most of the technologies thatwe use daily—from toothbrushes to traffic signals to smartphones have involved computationaltools in their conceptualization, manufacture, or operation. Increasingly, many engineeredsolutions rest heavily on computational thinking (CT). This raises the potential of using CT ineducational settings. Carefully designed integration of epistemic practices and tools can fosteropportunities for engineering education to be more authentic, powerful, and inviting.Attempts to integrate computational thinking with engineering in educational settings arerelatively recent. Initial research in this area suggests that the integration of CT with
Paper ID #17052Experimental Centric Pedagogy in First-Year Engineering CoursesProf. Kenneth A. Connor, Rensselaer Polytechnic Institute Kenneth Connor is a professor in the Department of Electrical, Computer, and Systems Engineering (ECSE) where he teaches courses on electromagnetics, electronics and instrumentation, plasma physics, electric power, and general engineering. His research involves plasma physics, electromagnetics, photon- ics, biomedical sensors, engineering education, diversity in the engineering workforce, and technology enhanced learning. He learned problem solving from his father (ran a gray iron foundry
Paper ID #18737It’s Simply Different There! Studying Abroad to Advance Engineering Prob-lem Solving while Cultivating Engineering LeadershipDr. Robert Prewitt Penno P.E., University of Dayton Dr. Robert Penno is a life, senior member of IEEE and a Professor in the Department of Electrical and Computer Engineering at the University of Dayton, Dayton, Ohio. Dr. Penno helped initiate Study Abroad programs for engineering students at the University of Dayton and has co-led five, month-long Study Abroad trips to Italy. He has also performed research at the Air Force Research Laboratories at Wright Patterson Air Force Base in
distributed. First, Management and Leadership, by complementingtheir engineering knowledge with the necessary professional and managerial skills. Second,Emerging Technologies by embedding practical technical knowledge with an essential bundle ofglobal competencies. Third, Innovation and Entrepreneurship by fostering global mindsets andhands-on opportunities. Collaboration with industry and educational institutions, recognizedcredentials, internationally certified courses, competitions, hackathons, one-on-one consultation,and collaborative workspaces are all integral parts of the initiative.In this work-in-progress paper and poster, we present the design paradigm of the studentprogram, and elaborate on its execution and key success factors
2022 ASEE Midwest Section Conference Engineering teaching approaches at the time of COVID Pavel Navitski1, Elena Gregg1, Robert Leland1, Viktar Taustyka2, Andrzej Gawlik2 1 Oral Roberts University, Tulsa, Oklahoma, USA / 2West Pomeranian University of Technology, Szczecin, PolandAbstractIn today's changing educational environment around the world, teaching engineering disciplinesis becoming a challenge for both students and teachers. Universities seek to provide studentswith the knowledge, skills, and experiences that will prepare them to enter directly intoprofessional practice as engineers, advanced studies in engineering
Williams University and an Associate Professor and Director of the Civil Engineering Analysis Group at the United States Military Academy. Dr. O’ Neill is a retired Lieutenant Colonel, U.S. Army Corps of Engineers. He has been active at the national level with ASCE’s Technical Council on Computing and Information Technology (TCCIT), Committee on Faculty Development (CFD) and Excellence in Civil Engineering Education (ExCEEd) initiative. Dr. O’Neill is a licensed Professional Engineer in California, Florida, Nevada and Virginia. He is a civil engineering program evaluator for the Accreditation Board for Engineering and Technology (ABET). He is an American Society of Civil Engineering Fellow (ASCE), a member of the
instruction and hands-on learning in middle-school classrooms. Course content andimplementation plan are described in the paper, and results of student and teacher assessment will bepresented at the conference.INTRODUCTION The faculty of the Mechanical Engineering (ME) Department at the University of South Alabama(USA) began, in Fall 1993, an evaluation of the undergraduate program to meet the challenge of engineeringeducation for the 21st Century. Restructuring of the mechanical engineering curriculum at USA is alsoprompted by the changing ABET (Accreditation Board for Engineering and Technology) requirements fordesign. Under the current criteria, design is defined as "an experience that must grow with the student'sdevelopment," and "the
work.Educational research has shown that there are many different types of learners. In typical basic courses, onlyone teaching method is employed -- lecture. On average, students learn better when they are active participantsin the learning process. Group efforts, hands-on learning and self-directed learning are some of the manymethods that encourage better learning.Finally, the use of advanced technology is common in many engineering courses. It is not as common in thelower division courses. All of our upper division engineering courses use computers heavily. Other schoolshave tried integrating computer applications such as symbolic algebra programs in calculus with great success.Some universities require that entering students purchase their own
and Applied Science at Queen’s University where he works on engineering curriculum development, program assessment, and developing educational technology. He is also a Professor in Electrical and Computer Engineering. c American Society for Engineering Education, 2020 Cognitive Skill Development Among Undergraduate Engineering StudentsAbstractThis research paper addresses assessment of numeracy and literacy among engineering students,which are core to problem solving and critical thinking, but challenging to consistently measure.The Essential Adult Skills Initiative (EASI) was a research project involving 20 Canadian post-secondary institutions, designed to measure the
Paper ID #16034A Flipped Classroom Approach to Teaching Transportation EngineeringDr. Aliye Karabulut-Ilgu, Iowa State University Dr. Aliye Karabulut-Ilgu is a lecturer in the department of Civil, Construction and Environmental En- gineering at Iowa State University. Her background is in Curriculum and Instruction, and her research interests include online learning, hybrid learning, and technology integration in higher education.Ms. Suhan Yao, Iowa State University Suhan Yao is a graduate student in Curriculum and Instructional Technology master program at Iowa State University. She works as a graduate assistant with Dr
instructionalsoftware emphasized lower-level cognitive processes,9 but a larger number report learning gainswhen implementing technology in the classroom through virtual experiments or onlineinstruction.10-13 Additionally, incorporating simulations into the classroom can increasevisualization and problem-solving processes,14,15 as well as show positive gains in student self-efficacy with respect to engineering skills.16Virtual experiments offer an opportunity to provide students with valuable experience at a lowcost (no laboratory space or consumables, only computer facilities, required), high flexibility(can be performed outside of class, does not require direct supervision, safety is not a directconcern), and great breadth (some disciplines may have
, MS). He has authored/co-authored over a hundred technical papers and reports during his career in private industry, government and academia. His current research interests are nearshore wave trans- formations, coastal structures, tsunami inundation, hurricane surges, high performance computing, and engineering education.Ms. Qing J Pang, Jackson State University Ms Qing Pang is Instructor in the Department of Electrical and Computer Engineering, College of Science, Engineering & Technology, Jackson State University. She earned her MS in Electrical and Computer Engineering from Georgia Institute of Technology in 2000. She worked for several private companies before joining Jackson State University in 2007 as an
for another major; that he did not believe I would succeed in this program. Forthe next few weeks, I visited different departments on campus searching for something I would like to do.None of them interested me enough to make the switch. So I went back to the Chair and told him that Iwas going to try and stick it out. He suggested that I consider an Engineering Technology degree instead.But since I would still need to take the same core courses as the Chemical Engineering curricula, I told himthat I may as well go for the real thing. The Chairman of the Department then made a statement that wouldstick with me for the rest of my life. He said, “OK, but I would recommend that you not get an engineeringjob when you graduate because we would not
2006-2313: A SYSTEMIC APPROACH TO GLOBAL COMPETENCY FORENGINEERSJuan Lucena, Colorado School of Mines JUAN LUCENA is Associate Professor in Liberal Arts and International Studies and affiliated faculty member in the Center for Engineering Education at the Colorado School of Mines. He is also 2005-2006 Boeing Company Senior Fellow in Engineering Education at the U.S. National Academy of Engineering and was keynote lecturer at the 2004 National Conference on Engineering Education in Colombia. Trained in mechanical and aeronautical engineering (B.S. Rensselaer 1987, 1988) and in Science and Technology Studies (Ph.D. Virginia Tech 1996), he is Principal Investigator of the NSF-funded project
Page 25.799.9Students. Issues in Science and Technology Librarianship, 60. Retrieved from http://www.istl.org/10-winter/article1.html6. Nerz, H.F. (2001). Information Competencies: A Strategic Approach. Proceedings of the 2001 AmericanSociety for Engineering Annual Conference & Exposition. Retrieved fromhttp://depts.washington.edu/englib/eld/fulltext/00510_2001.pdf7. Popescu, A. and R. Popescu. (2003). Building Research Skills: Course-Integrated Training Methods. Journal ofProfessional Issues in Engineering Education and Practice, 129 (1), 40-43.8. Roberts, J.C. and J. Bhatt. (2007). Innovative Approaches to Information Literacy Instruction for EngineeringUndergraduates at Drexel University. European Journal of Engineering Education, 32(3
Fellows and recommendations from theNational Science Education Standards on best practices for teaching K-12 science, the PrattSchool of Engineering created the MUSIC Program (Math Understanding through ScienceIntegrated with Curriculum). MUSIC is a GK-12 track 2 program funded by the NationalScience Foundation. The MUSIC Engineering Teaching Fellows receive intensive and pairedteacher/fellow training in inquiry-based instruction. The Pratt School of Engineering, partneredwith the North Carolina Department of Public Instruction, the North Carolina Science,Mathematics, and Technology Education Center, GlaxoSmithKline, Progress Energy and nineNorth Carolina school systems, has also developed a K-8 teacher training initiative known asTASC: Teachers
classroom environment. Tufts University offers this opportunitythrough the Center for Engineering Educational Outreach, and in the following paper, theparticipating female engineers account their enhanced leadership, communication, and technicalskills as a direct result of outreach.IntroductionAs technology becomes increasingly important in the global community, there is an evergrowing need for technological literacy amongst the population. Integrating engineering witheducation on the K-12 level will foster the development of students’ technological literacy; avaluable skill in becoming a global citizen. Engineering outreach is, thus, required in all societiesto educate all people on the importance of engineering and the role it plays in society. A