Sheri D. Sheppard, Ph.D., P.E., is professor of Mechanical Engineering at Stanford University. Besides teaching both undergraduate and graduate design and education related classes at Stanford University, she conducts research on engineering education and work-practices, and applied finite element analysis. From 1999-2008 she served as a Senior Scholar at the Carnegie Foundation for the Advancement of Teaching, leading the Foundation’s engineering study (as reported in Educating Engineers: Designing for the Future of the Field). In addition, in 2011 Dr. Sheppard was named as co-PI of a national NSF innovation center (Epicenter), and leads an NSF program at Stanford on summer research experiences for high school
materials for the hands-on activities. • Integrated engineering skill development as described in the Next Generation Science Standards • An optional field trip to the earthquake engineering laboratory at UC Berkeley’s Richmond Field Station to see engineering in action, with a fully-funded bus provided. • Free copy of the materials and lesson plans to participating teachers to support independent teaching of this unit in the future. Table 1: Sample Documentation for 4th Grade CurriculumStudent Learning Students will:Objectives: • Learn that earthquakes are a natural hazard and engineers help design buildings to reduce damage
structures of macromolecular assemblies including proteins, polymers, and lipid membranes. Undergrad- uates, graduate students, and postdoctoral scholars are trained in a multidisciplinary environment, utilizing modern methodologies to address important problems at the interface between chemistry, physics, engi- neering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of undergraduate courses to train engineers who are critical thinkers, problem solvers, and able to understand the societal contexts in which they are working to addressing the grand
, Minnesota,Penn State, Purdue, Rensselaer Polytechnic Institute (RPI), and the University of Texas--agreedto work with the firm and teach its specially prepared curriculum to more than 600 women.Program representatives recruited sophomore, junior, and senior coeds through advertisements incollege papers, calling especially for those with training in mathematics at least through algebra.The students went through a 10-month immersion in classes on engineering mathematics, jobterminology, aircraft drawing, engineering mechanics, airplane materials, theory of flight, andaircraft production. After that intensive exposure, Curtiss-Wright assigned Cadettes to plants towork in airplane design research, testing, and production.26Two of the institutions in
for prototyping and debugging.Educational platforms currently available are in the form of microcontroller populated boards(hard core processors) or programmable logic device boards. In the later, students can instantiatea configurable, soft core processor comparable to the one provided in the former. This leaveseducators with two distinct options for teaching embedded systems and low level programmingcourses (Note: there can be hard core processors within a programmable logic device, howeverthis paper is referring to a hard core processor as a stand-alone component).This paper is a dialogue between two faculty members, one defending design using hardcomponents, assembly and laboratory testing, and the other using soft components
; protecting structures fromsettlement and other damage; and preventing groundwater contamination. The topics covered inthe class include soil classification, permeability and seepage, volume changes, effective stress,strength and compaction.Innovation and EfficiencyIn EGR 340 a variety of strategies were used to balance efficiency and innovation in theclassroom. The educational strategies that emphasized efficiency included lecture, discussion, Page 25.351.5soil testing laboratories following standard procedures, peer teaching, problem sets, case studiesand other standard practices in engineering education. The classroom practices focusing
Session T4A3 Challenge-Based Instruction in an Engineering Technical Elective Course Ronald Barr1, Marcus Pandy2, Anthony Petrosino3, and Vanessa Svihla3 Department of Mechanical Engineering1, Department of Biomedical Engineering2, and Department of Curriculum and Instruction3 The University of Texas at Austin AbstractThis paper presents the methodology and results of teaching an engineering technical electivecourse using a challenge-based approach. The challenges consisted of eight
focused on the design and implementation of a course using a student-led laboratory method which supports the development of authentic and courageous leaders. American c Society for Engineering Education, 2021 How Do Human Interaction Labs Contribute to Engineering Leadership Development?AbstractThis paper outlines the impact of a small group experiential learning course (Human InteractionLab) that cultivates authentic engagement between participants. Unlike many experientiallearning environments, this course is fundamentally learner-centered, where students designateboth the content of discussion and the norms that dictate
. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation. Simplicity – the art of maximizing the amount of work not done – is essential.The programmers were then introduced to their clients as part of a laboratory session where eachengineering education major provided a brief presentation on their lesson plan. Eachprogramming team had to evaluate and rank the lesson plans in a bidding-type process. Thesebids were reviewed by the instructor and teams were then assigned to specific lesson plans. Thefirst half of the next laboratory session was dedicated for the teams to interact with their assignedclient in order to discuss the specifics of the lesson plan and to
(focused) schools or are designated a STEM school. In SouthCarolina, a number of elementary and middle schools have been designated a STEM school.These schools seek out annual field trips to allow their students to have firsthand STEM Page 26.1395.2experiences such as laboratory experiences within college level courses, aquariums, architecturalfirms, research labs, and manufacturing companies to mention a few.Gifted and talented Fourth and Fifth Grade students from Richland School District 2 schoolshave been conducting a field study (ALERT)2 at The Citadel every other year. Recently, the offyear visit is with an architectural firm at the school and
floodplain management, and sustainable land devel- opment. Dr. Dymond has had previous grants working with the Montgomery County Public Schools and with the Town of Blacksburg on stormwater research and public education. He teaches classes in GIS, land development, and water resources and has won numerous teaching awards, at the Departmental, College, and National levels. Page 24.1398.1 c American Society for Engineering Education, 2014 Work-in-Progress: The Platform-Independent Remote Monitoring System (PIRMS) for Situating Users
retirement. At Baylor University since 1998, he teaches courses in fluid mechanics, energy systems, propulsion sys- tems, heat transfer, and aeronautics. Research interests include renewable energy, small wind turbine aerodynamics, and noise generation as it applies to the urban environment. Currently, he designs small Unmanned Aerial System propellers, reducing noise and power requirements.Dr. Liping Liu, Lawrence Technological University Liping Liu is an associate professor in the A. Leon Linton Department of Mechanical Engineering at Lawrence Technological University. She earned her Ph.D. degree in Mechanical Engineering from Uni- versity of Illinois at Urbana-Champaign in 2011. Her researDr. Anthony M. Jacobi
. Richards, “Curriculum Approaches in Language Teaching: Forward, Central, and Backward Design,” RELC J., vol. 44, no. 1, pp. 5–33, Apr. 2013, doi: 10.1177/0033688212473293.[10] J. Emory, “Understanding Backward Design to Strengthen Curricular Models,” Nurse Educ., vol. 39, no. 3, p. 122, Jun. 2014, doi: 10.1097/NNE.0000000000000034.[11] K. Y. Neiles and K. Arnett, “Backward Design of Chemistry Laboratories: A Primer,” J. Chem. Educ., vol. 98, no. 9, pp. 2829–2839, Sep. 2021, doi: 10.1021/acs.jchemed.1c00443.[12] K. M. Cooper, P. A. G. Soneral, and S. E. Brownell, “Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences,” J. Microbiol
Paper ID #38654Board 88: Work in Progress: Impact of Electronics Design Experience onNon-majors’ Self-efficacy and IdentityTom J. Zajdel, Carnegie Mellon University Tom Zajdel is an Assistant Teaching Professor in electrical and computer engineering at Carnegie Mellon University. Dr. Zajdel is interested in how students become motivated to study electronics and engineer- ing. He has taught circuits, amateur radio, introductory mechanics, technical writing, and engineering de- sign. Before joining CMU, Tom was a postdoctoral researcher at Princeton University, where he worked on electrical sheep-herding of biological
, the Industry Advisorwas on campus one day a week. During the pandemic, the Industry Advisor remained available,albeit online. The Industry Advisor is transitioning to be back on campus regularly this yearwhile continuing to hold online meetings with students and faculty.d. Remote teaching and learning. The pandemic gave faculty an opportunity to change how wedesign and deliver our courses. To promote inclusive practice, faculty utilized recorded lectures,online collaboration tools and instant messaging apps to provide multiple ways ofcommunication for students. To continue the emphasis of “doing engineering,” faculty alsoimplemented remote laboratories that utilized tools accessible to students. More details onchanges made to accommodate
Paper ID #36647Fostering the Deliberate Development of Creative EngineersJakob C Bruhl (Civil Engineering Academy Professor)James Ledlie Klosky (Professor of Civil Engineering) Led Klosky is a Professor of Civil Engineering and long-time member of the faculty at West Point. A Professional Engineer, Led serves as the Dean's Executive Agent for Design and Construction and is interested in the design of collaborative learning spaces, infrastructure engineering and education, and subsurface engineering. Dr. Klosky is a past winner of the National Outstanding Teaching Medal from ASEE.Andrea E Surovek (Research Scientist
is devoid ofresearch that definitively identifies the most effective pedagogical method for introducingstudents to engineering ethics” [4, p. 677]. Perhaps most tellingly, the only clear qualification forteaching engineering ethics is being “enthusiastic about and comfortable with discussing ethicalissues and the social implications of engineering” [4, p. 680]. Barry and Herkert express this lackof clarity when they conclude that “although a background and experience in philosophy andengineering might make an individual well prepared to teach engineering ethics, a well-preparedinstructor from history of science or technology, technical communications, science andtechnology studies, and so forth could be equally qualified” [4, p. 680]. This
of General Chemistry at Purdue University. She is a Fellow of the American Association for the Advancement, a Fellow of the American Chemical Society (ACS), a Fellow of the Royal Society of Chemistry. In 2019 she received the Nyholm Prize in Education from the Royal Society of Chemistry. She received the 2017 ACS Award for Achievement in Research for the Teaching and Learning of Chemistry and the 2017 James Flack Norris Award for Outstanding Achievement in the Teaching of Chemistry from the Northeast Section of the ACS. She has been recognized with Purdue University’s most prestigious honors for teaching. Her research has focused undergraduate chemistry laboratory including the development and implementation
Coordinator for the Engineering Competencies, Learning, and Inclusive Practices for Success (ECLIPS) Lab in the De- partment of Engineering Education at Virginia Tech. Johnny is also a Graduate/Teaching Assistant to the Grad School Certificate Program - Preparing the Future Professoriate. He has a Master in Educational Foundations and Management and a Bachelor in Sociology. His research interests include STEM edu- cation (policy and foreign-born students and workforce), migration and immigration issues in education; international higher education/international students; and quality assurance in higher education.Dr. Homero Murzi, Virginia Polytechnic Institute and State University Homero Murzi is an Assistant Professor in
; 2014 The University of Texas System Regents’ Outstanding Teaching Award; and the 2012 NCEES Award for students’ design of a Fire Station. She also received 2018 American Society of Civil Engineers’ Texas Section ”Service to the People” award, and 2019 El Paso Engineer of the Year by the Texas Society of Professional Engineers. This is the first time in more than 30 years that a UTEP faculty wins this prestigious award.Mr. Nick A. Stites, University of Colorado Boulder Nick A. Stites is the Director of the Integrated Teaching and Learning Program and Laboratory at the University of Colorado Boulder. He is also an instructor in the Engineering Plus Program. His research interests include the development of novel
Paper ID #32681Educational Technology Platforms and Shift in Pedagogical Approach toSupport Computing Integration Into Two Sophomore Civil and Environmen-talEngineering CoursesDr. Sotiria Koloutsou-Vakakis, University of Illinois at Urbana-Champaign Dr. Sotiria Koloutsou-Vakakis holds a Diploma degree in Civil-Surveying Engineering (National Tech- nical University of Athens, Greece), a M.A. in Geography (University of California, Los Angeles), and M.S. and Ph.D. degrees in Environmental Engineering (University of Illinois at Urbana-Champaign). She teaches undergraduate and graduate courses on Air Quality, Science and
capstone design program. Prior to his position at UofL, Bohm was a visiting researcher at Oregon State University (OSU) after completing his PhD at the Missouri University of Science and Technology (S&T) in 2009. While at S&T, Bohm was also a Lecturer for the Department of Interdisciplinary Engineering and was responsible for coordinating and teaching design and mechanics related courses.Dr. Robert L. Nagel, James Madison University Dr. Robert Nagel is an Associate Professor in the Department of Engineering at James Madison Univer- sity. Dr. Nagel joined James Madison University after completing his Ph.D. in mechanical engineering at Oregon State University. Nagel teaches and performs research related to
serves as a Technical Director in the CEMA business area and leads the System Architecture Community of Practice where he is tasked with improving the practice of System Architecture of complex systems in the Electronics Systems business sector. This role involves both the development and teaching of the four course system architecture curriculum to staff engineers. Dr. Dano is a member of Sigma Pi Sigma, ASEE, a Senior Member of IEEE, President of the NE Chapter of INCOSE, and represents BAE Systems on the NDIA MOSA committee. American c Society for Engineering Education, 2021 System Architecture, the Missing Piece of Engineering Education
Design of Integrated Circuits and Systems Special Issue on Design Quality and Design Closure: Present Issues and Future Trend”, 2005. He also served as the Guest Editor of the Microelectronics Journal on Quality Electronic Design, 2005. His research interests include VLSI circuit and system design, CAD methodology for VLSI design, and bioelectronics.Prof. Branislav M. Notaros, Colorado State University Branislav M. Notaros is Professor and University Distinguished Teaching Scholar in the Department of Electrical and Computer Engineering at Colorado State University, where he also is Director of Electro- magnetics Laboratory. His research publications in computational and applied electromagnetics include more than 180
paper8.4.0 Tablet Application in a CEE junior level courseIn order to expose other faculty members to the potential of Tablet based teaching, the leadauthor got in touch with his colleague in the CEE department (i.e., 4th author) and decided to dotwo special Tablet based sessions in a junior level CEE course, “Water Resources EngineeringCEE3314” in fall 2007. The class included ~50 students. The key topics covered in CEE3314include: Open channel flow; hydrology; hydraulic modeling; hydraulic machinery and structuresand lecture content are supported by laboratory experiments and demonstrations. Two specialproblems involving design of trapezoidal channels with flexible lining and grass lining weredesigned for the proposed Tablet sessions. It may be
U-M. Her current research interests include the effect of instructional technology on student learning and performance, effective teaching strategies for new graduate student instructors, and the impact of GSI mentoring programs on the mentors and mentees.Joanna Mirecki Millunchick, University of Michigan Joanna Millunchick is Associate Professor of Materials Science and Engineering, and is affiliated with the Applied Physics Program and the Michigan Center for Theoretical Physics at the University of Michigan. Prior to joining UM in 1997, Millunchick was a Postdoctoral Fellow at Sandia National Laboratories. She received her B.S. in Physics from DePaul University in 1990, and her Ph.D. in
AC 2009-498: A CALL FOR CROSS-CAMPUS COLLABORATION INEXECUTIVE EDUCATION: REFLECTIONS ON THE CERTIFICATE ININNOVATION MANAGEMENT PROGRAM AT THE UNIVERSITY OFMARYLANDJames Green, University of Maryland Dr. James V. Green is the Director of the award-winning Hinman Campus Entrepreneurship Opportunities (Hinman CEOs) Program at the University of Maryland, and the associate director of entrepreneurship education at Mtech Ventures. He manages the executive education programs and the Technology Start-Up Boot Camp, and serves as the course manager for Mtech Ventures. He is an instructor with the A. James Clark School of Engineering, teaching a variety of courses in entrepreneurship and technology
in Engineering for Researrch and Graduate studies at Clarkson University. She has directed an NSF-Funded GK-12 Program - Project-Based Learning Partnership Program for the past six years and received the NSF Directors Award for Distinguished Teaching Scholars in 2004. Page 11.738.1© American Society for Engineering Education, 2006 Improving science literacy through project-based K-12 outreach efforts that use energy and environmental themesAbstractAn educational outreach program uses project-based curricula with environmental themes as ameans to engage students and increase their interest and competency
2006-1278: USING REFLECTIVE ESSAYS AS PART OF A MIXED METHODAPPROACH FOR EVALUATING A FRESHMAN LIVING-LEARNINGCOMMUNITY FOR ENGINEERING AND SCIENCE STUDENTSJennifer Light, University of Washington Jennifer Light is a 2005 Ph.D. graduate in Engineering Education from Washington State University and was recently awarded a National Academy of Engineering post doctoral appointment with the University of Washington Center for Engineering Education. She is the author of several publications on engineering learning communities and assessment.Laura Girardeau, Washington State University Laura Girardeau, M.S., is a Learning Designer at Washington State University’s Center for Teaching, Learning, and
Paper ID #19505Reflection and Metacognition in an Introductory Circuits CourseDr. Stephanie Claussen, Colorado School of Mines Stephanie Claussen’s experience spans both engineering and education research. She obtained her B.S. in Electrical Engineering from the Massachusetts Institute of Technology in 2005. Her Ph.D. work at Stanford University focused on optoelectronics, and she continues that work in her position at the Col- orado School of Mines, primarily with the involvement of undergraduate researchers. In her role as an Associate Teaching Professor, she is primarily tasked with the education of undergraduate