LTU Leadership Curriculum Committee, supervisor of the LTU Thermo-Fluids Laboratory, coordinator of the Certificate/Minor in Aeronautical Engineering, chair of the First Year Engineering experience, and faculty advisor of the LTU SAE Aero Design Team.Dr. Donald D. Carpenter P.E., Lawrence Technological University Page 23.266.1 c American Society for Engineering Education, 2013 Campus-wide Course Modification Program to Implement Active & Collaborative Learning and Problem-based Learning to Address the Entrepreneurial MindsetAbstractWhile active and
Paper ID #7355Defining Engineering in K-12 in North CarolinaDr. Laura Bottomley, North Carolina State University Laura Bottomley received a B.S. in Electrical Engineering in 1984 and an M.S. in Electrical Engineering in 1985 from Virginia Tech. She received her Ph D. in Electrical and Computer Engineering from North Carolina State University in 1992. Dr. Bottomley worked at AT&T Bell Laboratories as a member of technical staff in Transmission Systems from 1985 to 1987, during which time she worked in ISDN standards, including representing Bell Labs on an ANSI standards committee for physical layer ISDN standards
Paper ID #7189Engaging Early Engineering Students (EEES): A Fourth Year Report froman NSF STEP ProjectDr. Jon Sticklen, Michigan State University Jon Sticklen is the Director of the Center for Engineering Education Research at Michigan State Univer- sity. Dr. Sticklen is also Director of Applied Engineering Sciences, an undergraduate bachelor of science degree program in the MSU College of Engineering that focuses both on engineering and business. He also is an Associate Professor in the Department of Computer Science and Engineering. Dr. Sticklen formerly led a laboratory in knowledge-based systems focused on task
activities and laboratory projects. Thelearning objective of the course reflects criteria recommended by the National Academy ofEngineering (NAE)1 and ABET14. In our offering of this course, four weeks of general lecture Page 23.42.4provided an overview of the engineering profession, with a focus on topics of failure analysis,design methodology, human-centered design, engineering in society, leadership and ethics.Students then partook in two sets of five-week modules.In the Fall of 2010, a 5-week leadership module was incorporated into the freshman engineeringdesign course; it was offered as the mechanical engineering module alongside
Education (CIEE) and Director of the Advanced Thermal Fluids Laboratory. Her interests in engineering education research center around recruitment and retention, engineer identity, engineering design instruction and methodology, learning through service, problem based learning methodologies, assessment of student learning, as well as com- plex problem solving. Her other research interests lie in cardiovascular fluid mechanics, sustainability, and K-12 engineering outreach. Dr. Pierrakos is a 2009 NSF CAREER Awardee. Dr. Pierrakos holds a B.S. in Engineering Science and Mechanics, an M.S. in Engineering Mechanics, and a Ph.D. in Biomedical Engineering from Virginia Tech.Dr. Jacquelyn Kay Nagel, James Madison University
through selected quotations how the proposedresearch mentoring models exist and apply to each of the mentoring relationships, regardless ofgender composition, research area, type of laboratory or experimental work, etc. The coachingmodel is explained first from the perspective of 3 mentoring pairs: Mia and Annie (both female),Nate and Scott (both male), and Russell and Rachel (male mentor and female mentee). Thesupervisory model follows, as demonstrated by Dwayne and Amelia (male mentor and femalementee), Keeley and Veronica (both female), and Drake and Shannon (male mentor and femalementee). These gender pairings are summarized in Table 2Error! Reference source not found
membersprovide an invaluable link between industry and the engineering school by mentoring our studentsone-on-one. Because of students’ intense schedules, we do not require mentoring; however,students who elect to work with a mentor consistently perform better than those who do not.Clearly, the relationship that develops between a dedicated experienced professional and a young“apprentice” has no substitute.Between 1987 and 1999, our program grew to reach about 65 percent of our upper-level studentsat some level of instruction—either via our “stand-alone” three-credit technical electives10 or viashort modules integrated into design project, internship, laboratory, and other engineeringcourses. Our TC faculty tailored the short modules (typically five or
the development of technology-based firms. These are mainly located at or near universities and science and technology parks. They are characterised by institutionalised links to knowledge sources including universities, technology- transfer agencies, research centres, national laboratories and skilled R&D personnel. Specific industrial clusters and technologies may also be targeted such as biotechnology, software or information and communications technologies. A main aim is to promote technology transfer and diffusion while encouraging entrepreneurship among researchers and academics. In some countries, technology incubators not only focus on new firms but also help existing technology-based
an Assistant Professor of civil and environmental engineering with a specialty in geotechnical engineering. Her civil engineering research projects typically involve testing geosynthetic materials, as well as instrumenting and monitoring large-scale civil engineering structures constructed with geosynthetic inclusions to determine their performance behaviors in the field. Warren has more re- cently become involved in the educational research arena and is currently implementing classroom inno- vations in a core civil engineering undergraduate course to determine and assess the impact of interactive learning as part of a course, curriculum, and laboratory improvement grant
of experiences infirst-year courses extend into the second year and beyond in engineering programs.AcknowledgementsThis paper is based on research supported by the National Science Foundation under Grant No.HRD# 0936704. Any opinions, findings, and conclusions or recommendations expressed in thismaterial are those of the authors and do not necessarily reflect the views of the National ScienceFoundation.References1. Cline, M. and G.J. Powers. Problem Based Learning via Open Ended Projects in Carnegie Mellon University's Chemical Engineering Undergraduate Laboratory. in Frontiers in Education. 1997. Pittsburgh, PA.2. Douglas, D.M., et al. Writing in the Engineering Design Lab: How Problem Based Learning Provides a
typically at an individual level, whether throughhome assignments or class exercises.As noted by Williams12 (2009), following Dewey’s Laboratory School, classrooms can berestructured to accommodate non-individual learning as well, to mirror practices of theworkplace. Assignments can be made collaborative so that students are working together andlearning from one another. For example, time could be set aside in Engineering Economicsclasses every week for collaborative problem-solving exercises.IACBE4 (2011) accreditation requirements include teamwork and engineering economicscourses can help students progress toward meeting outcomes in this area. ABET’s Criterion 3also encourages teamwork (3Ad, 3Bc) in engineering technology programs (ABET5, 2011
years of grantfunding.The project had four distinct phases. In Phase One, Cohort A, high school participants, engagedin an intensive summer university experience. While participating in classroom and laboratory-based experiences, they were exposed to cutting-edge research in NASA-Related Earth SystemScience. In collaboration with university faculty, graduate students and a professionaldevelopment team of master teachers, Cohort A systematically developed NASA-related STEMK-12 teaching modules for secondary students. The proposed module development activitieswere designed to help teachers translate their new NASA-related scientific knowledge during thesummer research experience into their instructional practices in the classroom.Cohort A
AC 2012-4850: ON THE BENEFITS OF USING THE ENGINEERING DE-SIGN PROCESS TO FRAME PROJECT-BASED OUTREACH AND TORECRUIT SECONDARY STUDENTS TO STEM MAJORS AND STEMCAREERSDr. Jean-Celeste M. Kampe, Michigan Technological University Jean Kampe is currently Department Chair of engineering fundamentals at Michigan Technological Uni- versity, where she holds an Associate Professorship in the Department of Materials Science and Engi- neering. She received her Ph.D. in metallurgical engineering from Michigan Tech, M.Ch.E. in chemical engineering from the University of Delaware, and a B.S. degree in chemical engineering from Michi- gan Tech. She was employed as a Research Engineer for five years at the Naval Research Laboratory in
anything just because. The thing that I was very frustrated with my physics education was that I wasn’t really allowed to put any of myself into it I was just mimicking the professor. All of my labs are open and creative and sometimes my laboratories are just about experiencing.” “The women, they’re a lot more open to working on projects collaboratively. I do try to be somewhat aware of my classroom demographics. For instance, I’ve got a class this quarter that’s all male so we’ve been able to do lots of car things and guy things but if I Page 15.436.11 had women in the class I’d kind of shy away from those
classproduced the same result; MST grades for individual assignments were on par, or better, thanT/PrEE students. This result was counterintuitive because MST majors start the program withclearly weaker skills and lower comfort with laboratory tools. However, MST students tendnot to hesitate in asking for help in understanding a process. A T/PrEE student is often theone providing the help, which also benefits the T/PrEE students since he/she gatherseducational experiences in providing this help.In summary, MST students are not simply passing T&E courses but are actually performingon par or better than the TE students. This is a strong indication that MST students arelearning substantial T&E content. (iii) Technology Education PraxisTM
thehorizontal alignment is explained). The remaining part of this paper details the steps takentowards restructuring the material for highway alignment design covered under the mandatoryTransportation Engineering course offered to civil engineering undergraduate students at a majorMidwest engineering school. This course laboratory covers highway design activities as part of aclass project.Research Questions and MethodThe overall objective of this study was to explore to what degree the use of the framework Page 15.1034.5proposed by the model of threshold concepts can help to improve the learning process in adesign-focused Transportation Engineering
Research Professor in the School of Materials at ASU and has been teaching and developing new content for materials science and engineering classes and laboratories. She has developed new content and contextual teaching methods from her experience as a researcher and General Manager at Honeywell Inc. She is currently working to develop new assessments to reveal and address student misconceptions in introductory materials engineering classes.Stephen Krause, Arizona State University Stephen Krause, Arizona State University Stephen Krause is Professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and
teaches courses in science curricula, teaching and learning, and assessment courses with an emphasis on constructivist theory and issues of equity. Her research focuses on issues of gender, science, and science teaching. She has won two awards for her research in these areas. In this work she is responsible for developing assessments and overseeing data collection, analysis, and feedback to the project.Amaneh Tasooji, Arizona State University Amaneh Tasooji, Arizona State University Amaneh Tasooji is an Associate Research Professor in the School of Materials at ASU and has been teaching and developing new content for materials science and engineering classes and laboratories. She has developed new
, Senior Capstone: Production Laboratory, and Senior Project courses, along with theIndustrial Internship Program.This integration has occurred in various components of these courses. The textbook readings,lectures, and discussions were revised in order to emphasize the findings from the study. Inaddition homework assignments, case studies, and real world experiences derived from the studywere included as individual or group exercises.Homework assignments and case studies related to performance measurements were developedand implemented for the aforementioned senior courses. In each case, the students are to applytheir knowledge of performance monitoring techniques to the particular problem and analyzetheir effectiveness, suggest improvements, and
been employed. • Recipient of NBIA’s 1995 Randall M. Whaley Incubator of the Year Award. • The Incubator has remained financially self-sustaining since its inception.”Other universities observed Rensselaer’s success and founded their own incubators. Mian (1996a) in a study of Page 10.1096.1university technology business incubators found that the university affiliation adds value to incubator client firmsdue to the university’s image, laboratories and equipment, and student employees. Mian also listed the
usable MEAs to differentengineering disciplines; and extending the MEA approach to identifying and repairingmisconceptions, using laboratory experiments as an integrated component, and introducing anethical decision-making dimension [1].Our overall research goal is to enhance problem solving and modeling skills and conceptuallearning of engineering students through the use of model eliciting activities. In order toaccomplish this goal at the University of Pittsburgh, we are pursuing two main research routes:MEAs as teaching tools and MEA as learning assessment tools. Under the first – using MEAs asa teaching tool – we are focused on three main activities: 1. Development of effective model eliciting activities: The creation of MEAs for upper
. Valian’s visit, a FacultyLearning Community on Mental Models was initiated and is described below.The second speaker was Dr. Debra Rolison, head of Advanced Electrochemical Materials,Surface Chemistry Branch at the Naval Research Laboratory in Washington D.C. Since she is anoutstanding chemist and a knowledgeable promoter for gender equity the project team thoughtshe would be an effective advocate for change in the Colleges of Science and Engineering. Dr.Rolison visited the TAMU campus in February 2003 as a prelude to the WISE Conference. Sheinteracted with approximately fifty members of the A&M faculty and staff during an openlecture and several small group sessions. Dr. Rolison delivered a powerful message, “Time toThrive, Not Just Survive
are acceptable unless there is some reason, such as environmentalissues, that prohibits them from being on campus. Biotech companies tend to stay thefull four years, and IT companies tend to stay for a much shorter time. Once admitted,companies enjoy increased credibility due to the rigorous admittance process. TAPservices and dynamic atmosphere create an environment where entrepreneurs flourish,with flexible, furnished office and laboratory space, modern IT and biotechnologyinfrastructures, in-house business support, and convenient office facilities. As the firsttechnology business incubator facility in Maryland, TAP has refined its services soentrepreneurs can focus less on administrative details and more on growing theircompanies.Companies
Annual Conference & Exposition Copyright 2004, American Society for Engineering EducationUniversity and the University of Denver – were, for the purposes of this research, “worth” two-thirds of semester-length courses, based on the duration of the associated terms. Course “worth”can further vary according to the number of weekly lesson and laboratory hours. The researchconducted for this paper, however, did not examine the courses to this level of detail. Table 3 summarizes the transportation course offerings according to the 15 essentialtopics listed earlier. A total of 210 (85.0%) of the 247 courses were in the essential areas. Atleast two courses were being taught in each of the 15 essential topics. The