Asee peer logo

The Inverted Classroom in a First-Year Engineering Course

Download Paper |

Conference

2013 ASEE Annual Conference & Exposition

Location

Atlanta, Georgia

Publication Date

June 23, 2013

Start Date

June 23, 2013

End Date

June 26, 2013

ISSN

2153-5965

Conference Session

FPD 7: First-Year Engineering Courses, Part II: Perceptions and Paradigms

Tagged Division

First-Year Programs

Page Count

11

Page Numbers

23.1220.1 - 23.1220.11

DOI

10.18260/1-2--22605

Permanent URL

https://peer.asee.org/22605

Download Count

968

Paper Authors

biography

Brooke Morin Ohio State University

visit author page

Brooke Morin is a Lecturer in the College of Engineering at Ohio State University, teaching First-Year Engineering for Honors classes in the Engineering Education Innovation Center. She also worked with the program as an Undergraduate Teaching Assistant and a Graduate Teaching Associate. Brooke earned her bachelor's degree and master's degree in Mechanical Engineering at Ohio State.

visit author page

biography

Krista M. Kecskemety Ohio State University

visit author page

Krista Kecskemety received her B.S. in aerospace engineering at The Ohio State University in 2006 and received her M.S. from Ohio State in 2007. Upon completion of her Ph.D. in Aerospace Engineering in 2012, Krista became a lecturer at Ohio State in the First Year Engineering Program.

visit author page

biography

Kathleen A Harper Ohio State University

visit author page

Kathleen A. Harper is a faculty lecturer in the Engineering Education Innovation Center at The Ohio State University. She received her M.S. in physics and B.S. in electrical engineering and applied physics from Case Western Reserve University, and her Ph.D. in physics from The Ohio State University. She has been on the staff of Ohio State’s University Center for the Advancement of Teaching, in addition to teaching in both the physics department and college of engineering. Her research interests address a broad spectrum of educational topics, but her specialty is in how people learn problem solving skills.

visit author page

author page

Paul Alan Clingan Ohio State University

Download Paper |

Abstract

The Inverted Classroom in a First-Year Engineering CourseA first-year course affords a unique opportunity to implement new instructional techniques sincestudents’ lack of prior college experience leads to less resistance than one might expect in anupper-level course. The first-year engineering program at a large Midwestern university electedto implement the inverted, or flipped, classroom model.1 Through this model, the instructorshoped to dedicate their contact time with the students to addressing conceptual problems andfacilitating in-class activities, rather than lecturing about factual material. Further, by holdingstudents accountable for their pre-class preparation, the environment would foster the skillsnecessary for lifelong learning. Despite the potential of this approach in the first-yearengineering classroom, few authors have discussed the inverted classroom in this context.2 Thepurpose of this paper is to relay the method by which one program applied the invertedclassroom model to its first-year engineering classes and to share results of preliminary analysesof the effect this change had on student performance and experience, focusing on fall semester.The fall semester focused primarily on computer-aided problem solving, using Excel, MATLAB,and C/C++. Academic integrity, engineering ethics, data analysis, team building, and theengineering design process were also covered. There was a laboratory component to the course,which included laboratory exercises from a variety of engineering disciplines. The invertedclassroom model was applied to each course component. Each instructional day was divided intotwo parts: preparation and application. The preparation component was completed before classand involved pre-class learning activities such as videos, reading assignments, and tutorials,which were intended to promote remembering and understanding.3 Student completion of thepreparation activity was evaluated either through a quiz on the online course management systemor through a short assignment submitted at the beginning of class. The application componentbegan with class and included a short set of slides, in-class activities, and homework, oftenrequiring students to use higher level Bloom’s taxonomy skills, such as application, analysis, andevaluation.The authors are currently teaching the course. As of abstract submission, preliminary datasuggest that the students are better prepared for class, and the student response seems to beneutral to positive. However, a concrete analysis of student performance and response cannot becompleted until the class is closer to conclusion. This will occur before submission of the draftpaper. The paper will report on student self-assessment of learning in course objectives in boththe traditional and inverted models, use rate of course resources, and responses to the courseformat. Additionally, student learning gains, as measured through final exam performance.The inverted classroom model has the potential to revolutionize the first-year engineeringexperience. It allows the instructor to focus on higher-level learning in the classroom andprovides students with a strong foundation for lifelong learning. By sharing the strengths andweaknesses of this initial implementation in this paper, the authors hope to provide a resource forother instructors considering the change to the inverted classroom model.1. M.J. Lage, G.J. Platt, and M. Treglia. “Inverting the Classroom: A Gateway to Creating anInclusive Learning Environment,” The Journal of Economic Education, vol. 31, no. 1, Winter2000.2. M. Pedroni and B. Meyer. “The inverted curriculum in practice,” SIGCSE Bulletin, vol. 38,no. 1, March 2006.3. L.W. Anderson, et al. A Taxonomy for Learning, Teaching, and Assessing. Addison WesleyLongman, Inc., Illinois, 2001.

Morin, B., & Kecskemety, K. M., & Harper, K. A., & Clingan, P. A. (2013, June), The Inverted Classroom in a First-Year Engineering Course Paper presented at 2013 ASEE Annual Conference & Exposition, Atlanta, Georgia. 10.18260/1-2--22605

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2013 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015