? 421 Did your participation on the team help or hinder your performance and the end 3.75 result of the project?22 Do you understand the importance of having a planning/design phase before an 4.25 implementation phase?23 Do you feel that expectations were too high? 3.7524 Do you feel like there was too much work? 3.525 Was the course relevant to your interests? 4.7526 Did the course stimulate your interest in engineering/CIS/robotics? 527 Understand various aspects of hardware/software integration 3.7528 Able to develop criteria for the selection
AC 2008-2956: CONTEXT-BASED PROBLEMS AND EXERCISES FORTEACHING ENGINEERING ECONOMYRajkamal Kesharwani, Virginia Polytechnic Institute and State University Rajkamal Kesharwani is an MS student in the Industrial and Systems Engineering Department at Virginia Tech. His interests include decision making in engineering design and design economics.Xiaomeng Chang, Virginia Polytechnic Institute and State University Xiaomeng Chang is a doctoral student in Industrial and Systems Engineering at Virginia Tech with an expected graduation in May 2008. Her research and teaching interests are primarily focused in the areas of engineering design, integration and knowledge environments.Janis Terpenny, Virginia Polytechnic
modifications,based on the consideration of process or design constraints, is facilitated by theavailability of a physical model.Participants all agreed that the inclusion of rapid prototyping content into course subjectmatter broadened students’ exposure to design and integrated manufacturing practicesand, in the case of Engineering Graphic courses, provided a tool for enhancing thevisualization skills of students. The following is a partial list of comments from theteacher/instructor survey information. • This was great, RP is truly amazing. I only wish there were more time to explain ways to use RP activities in K-3 curriculum. • Wonderful workshop- I was fascinated by the technology and am proud TTU is
amongst them are(i) Assigning “tasks” to team members that tend to be outside their specialty and (ii) Creatingteams in which students of two closely related majors are placed on a capstone design team for ashort duration (typically a semester). These approaches are definitely steps in the right directionbut have limitations.This paper describes an innovative and sustainable framework to provide “multi-disciplinary”experience between the Biomedical Engineering (BE) and Software Engineering (SE) students atMSOE. The approach is neither an “after-thought”, nor an “add-on” to one of the existingcourses. It is a well-thought out plan for vertical and horizontal integration of this experiencewithin the curriculum. This interaction not only provides
possiblefuture career opportunities.6 Additionally, while many individuals in the general public arefamiliar with nano through informal means and have opinions on the topic, few have receivedformal education on topics pertaining to nanoscale science, engineering, and technology.7Despite compelling arguments for inclusion of NSET into the K-12 curriculum, there is a paucityof research in this area. The little formal research that has been conducted has focused primarilyon size and scale, including student and expert ideas about scale, and how to integrate ideas ofsize and scale into the classroom.8-10 Other literature primarily consists of activities incorporatingsome NSET content, often at the undergraduate level11 : very little is focused on inclusion
is the James F. Naylor, Jr. Endowed Professor and the Program Chair for Mechanical Engineering at Louisiana Tech University. He received his B.S. from Louisiana Tech and his M.S. and Ph.D. from Georgia Tech. His research interests include trenchless technology and engineering education.Kelly Crittenden, Louisiana Tech University Dr. Kelly Crittenden received his BS and PhD in BioMedical Engineering from Louisiana Tech University in 1996 and 2001 respectively. He is often involved in multidisciplinary work at Louisiana Tech, either through the Integrated Engineering Curriculum or through the IMPaCT (Innovation through Multidisciplinary Projects and Collaborative Teams) program. He is
) at the Polytechnic campus recently restructured theircurriculum to provide flexibility for the curriculum to introduce emerging technologies to theirstudents on an ongoing basis by partnering with the industry partners. This paper outlines thelaboratory activities as an example to be included into the existing curriculum for the BS degreeseeking students in the Electronics Engineering Technology program.2. Sample Laboratory ApplicationsIn this Section we discuss laboratory experiments that can be easily implemented in aninstrumentation USB laboratory using FTDI products. These experiments will provide a studentin-depth understanding of various USB concepts.LAB1 – USB to UART Converter (single-port)Serial (COM) ports are all but obsolete in
. Page 13.1075.1© American Society for Engineering Education, 2008 Service Learning: Community and Cultural Values that Engage Under Represented Groups into the STEM PipelineAbstractEnvironmental and Spatial Technology (EAST) is a high school elective class that usessophisticated technology in service projects designed to improve students’ critical thinking andproblem solving skills. EAST is a national initiative that now includes more than 220 schools inArkansas, California, Hawaii, Iowa, Illinois, Louisiana, Oklahoma and Pennsylvania. It is aproject-based, service-learning class that integrates technology into the traditional high schoolcurriculum. EAST students work in teams to solve real world problems in their schools
, frequency multiplier, and power amplifier at the finaloutput stage. In an FM receiver they see the components working as: an RF amplifier, localoscillator, FM mixer, IF amplifier, FM detector, output audio amplifier and automatic frequencycontrol circuit. Students also learned to appreciate the modular nature of complex designs.At the end of the semester, a survey was given to determine the results on student learningconcerning the concepts and applications of electronics. The results of this project may promptthe implementation of other projects that may include multidisciplinary collaboration, integrationof projects between classes, projects across concentrations, and integration of a single projectfrom the freshman to the senior
. Inthis paper we will present the curriculum module, student activities, and an evaluation of studentlearning.IntroductionRecruiting and retaining minority students are major concerns of educational institution acrossthe United States. Furthermore, as technology becomes increasingly important in the globalmarket, there is an ever growing need for minority engineers to support this market1. Asinternational participation in advanced science and engineering increases, and as our nationalpopulation becomes more diverse, it becomes even more important to provide quality educationto [minorities]2.Literature review suggests the growing importance of minority recruitment and retention.Presidents of universities and deans of colleges identify minority
. Forassessment to be formative, facilitating feedback to students to nurture improvement such thatstudents will perform better in the future, the assessment tasks would have to be progressive /continuous. These tasks can be weekly short WebCT quizzes, fortnightly short reports, and shortwritten tests. Figure 2: Aligning Curriculum Objectives, Teaching and Learning Activities, and Assessment Tasks“If the curriculum is reflected in the assessment, …, the teaching activities of the teacher and the Page 13.111.7learning activities of the learner are both directed towards the same goal” [7]. To this end, wehave designed a system for teaching an
deconstructing andreconstructing their schemas. Again, students tended to rely on ends-means analysis withoutinvoking deeper conceptual understanding. When trying to construct an appropriate physicalsituation corresponding to a given Jeopardy expression, we found students tended to focus on alimited numbers of constants rather than the variable of the integration or differentiation to helpthem construct the physical scenario. They often used dimensional analysis and unit matching tofind out the physical quantity that was being calculated in the expression. Thus, students haddifficulty in deconstructing their calculus schemas in Jeopardy problems of navigating multiple
using ahydraulic servomechanism.Preliminary developmental efforts24, 25 in designing the carbon nanotube experiment emphasizedthe whole process including manufacturing and characterization. However, the time andequipment constraints were not adequately addressed. For example, an atomic force microscopein the Chemistry Department was used for material characterization. This created schedulingproblems and required additional time to learn how to use the instrument.Curriculum Context The Engineering of Manufacturing Processes is a required three-hour lecture two-hourlaboratory one-semester junior/senior course offered in the Industrial Engineering program at_______________. This course together with a computer-integrated manufacturing
capabilities of new bachelor degree civil engineering graduates. Obviously, we mustwait to see how ASCE will address the 28 outcomes in view of under-graduate educationachievement. But it appears clear that the civil engineering bachelor’s degree graduate will nothave a level of technical skills that we ‘old-timers’ did. There will be more of the ‘soft- subjects’covered in under-graduate education. This is not to say that a Professional Engineer should nothave an appreciation and understanding for the numerous ‘professional practice’ topics, in factthey should. But why not gain this knowledge in post-under-graduate study? The simpleexplanation could well be that ASCE only has direct influence over the curriculum taught at theunder-graduate level.While
graduate course in Sustainability andInternational Standards. The course conveys the importance of voluntary internationalstandards, such as from ASTM International or the International Organization forStandardization (ISO), to sustainability. The curriculum uses an innovative experiential learningapproach whereby students research and develop a standard using the ASTM Internationalprocess. One driven student joined ASTM International and worked to see her class projectcatalyze the publication of ASTM E 2348 Guide for Framework for a Consensus-BasedEnvironmental Decision-Making Process.IntroductionIn 2004, the Oklahoma State University Environmental Institute established a graduate-levelcourse covering sustainability and international standards
for, and an ability to engage inlifelong learning. In most of the Engineering Technology (ET) programs, capstone projects aredesigned for students to utilize their technical knowledge, problem solving skills, and projectmanagement skills to develop a product or a system related to their discipline. This paper presentsa methodology of utilizing the capstone course as a vehicle to enhance and assess student’s lifelong learning skills. During the semester long course, one student team signed up to learn thesubject of adhesive technology that is not taught in the current curriculum. The student teamdesigned and built an adhesive test apparatus that can be used for outreach activities. Anotherstudent team was assigned to learn rapid prototyping
current hi-tech knowledge and skills. These experts are familiar with the recentadvances in technology, new processes, equipment, and industry “best practices.” To maintaincurrency with technology and produce work-ready graduates, SMEs are needed to help createand maintain curriculum that addresses key technologies and emerging industry trends. Topromote greater breadth of student learning, SMEs are needed to help integrate specific technicaltopics within core college curriculum—science, technology, engineering, and mathematics.Teaming SMEs with faculty developers, instructional designers/developers (IDs) produces aneffective blend of unique abilities for scoping, structuring, and organizing technical informationin a way that facilitates
; Exhibition.49. Alford, E. and T. Ward. 1999. Integrating ethics into the freshman curriculum: an interdisciplinary approach. Session 2561. 1999 American Society for Engineering Education Annual Conference & Exhibition.50. Marshall, J. and J. Marshall. 2003. Integrating ethics education into the engineering curriculum. Session 1675. 2003 American Society for Engineering Education Annual Conference & Exhibition.51. Davis, M. 1992. Integrating ethics into technical courses: IIT’s experiment in its second year. 1992 ASEE Frontiers in Education Conference Proceedings, p. 64-68.52. Leone, D. and B. Isaacs. 2001. Combining engineering design with professional ethics using an integrated learning block. Session 2525. 2001 American Society
expertise of an urban school of engineering, school ofmedicine and school of education. The BMERET program has provided middle schooland high school science teachers in urban settings with opportunities to engage withpremiere researchers in BME laboratory settings at a top tier research university. Withthe combined expertise of the BME scientists and education faculty, BMERET teacherparticipants are creating powerful curriculum to use in their middle school and highschool science classrooms. The teacher participants have experienced greater scienceteaching efficacy then their non-participant teacher peers, which may be as a result of thecollaborative RET experience. Sixth through twelve grade teachers have benefited greatlyfrom bringing the BME lab
are beginningto create undergraduate programs in biomedical engineering and developing new curriculums tosupport such programs. Medical Robotics is a Level 4 compulsory course in McMasterUniversity’s new established Electrical and Biomedical Engineering program. This paperprovides an overview of a laboratory component which has been co-developed by McMasterUniversity and Quanser Consulting Inc. for this course. First, the motivations for introducing aMedical Robotics course into the Biomedical Engineering curriculum and the desired learningoutcomes pursued by the proposed laboratory experiments are discussed. These are followed bya brief introduction of the hardware/software system used in the lab as well as detaileddescriptions of four
LaboratoryAbstractPresently there is a need to develop more effective ways to integrate experimental design into theengineering curriculum. To address this need, we are developing virtual laboratories that providestudents a capstone experience in which they can apply experimental design in a context similarto that of a practicing engineer in industry. In a virtual laboratory, simulations based onmathematical models implemented on a computer are used to replace the physical laboratory.However, as opposed to being constructed as a direct one-to-one replacement, the virtuallaboratory is intended to complement the physical laboratories in the curriculum so that certainspecific elements of the experimental design process are addressed. We have previously reportedon the
solving physical problems.K-12 members’ perceptions seem to hinge on building an understanding and appreciation ofwhat engineering is and how it impacts society, and of preparing and motivating students tobecome engineers. Open-ended responses provided phrases like integrating STEM intoactivities, projects, presentations, scoring rubrics, and assessment shared across the members. Abroader view included educating both students and the general public on the importance of,process of and implementation of engineering in the world today. K-12 members also viewedengineering education as a research field of teaching and learning. Members of this group wereopen to the PhD in traditional engineering with interest in teaching or a PhD in education
(Boston Museum of Science)General Description: The Center’s goal is to integrate engineering as a new discipline in schoolsnationwide and to inspire the next generation of engineers and innovators. It offers curriculum,professional development, and partnership with industry, and school systems. The Center isresponsible for the following programs:Engineering is Elementary: Engineering and Technology Lessons for Children (EiE) is aimed toelementary level students. The program integrates engineering content with elementary scienceconcepts. “Each unit focuses on a field of engineering—for example, materials engineering,mechanical engineering, and environmental engineering—and includes a child's illustratedstorybook, lesson plans, and student
University. He is an elected member to the Board of Directors of the Association of Environmental Engineering and Science Professors (AEESP) and is currently the AEESP President. He also serves on EPA’s Science Advisory Board Environmental Engineering Committee. Dr. Mihelcic co-led several sustainability education initiatives at Michigan Tech including development of a new “Graduate Certificate in Sustainability” and an “Undergraduate Certificate in International Sustainable Development Engineering”. He is the lead author of one textbook titled Fundamentals of Environmental Engineering (John Wiley) (which has been translated into Spanish) and is the lead author for two additional books to be published
paper reports the responses from participants in this unique workshopsession.BackgroundThe emergence of engineering as a school subject is in its infancy. The most importantengineering concepts and skills that students of differing interests and aptitudes shouldmaster are not well defined. State adopted curriculum materials, often the cornerstone of aprofessional development program, are still unavailable. To begin to understand theimportant features of an effective professional development program, NCETE focused itsefforts on engineering design as a content area in high schools. The rationale for thisdecision is that aspects of engineering design are shared by technology design as describedin standard 8 of the Standards for Technological
categories:discovery, integration, application, and teaching 1. This is the well-known “Boyer’smodel of scholarship.” Since its inception in 1990, Boyer’s model has been widelydiscussed and debated, and the focus has mainly been on its impact on university faculty,especially their tenure, promotion, and reappointment (TPR) policies 2, 3.However, scholarships are not generated by faculty alone. Our students, especiallygraduate students, are an important integral part of the scholarship. They serve as abackbone of pure research (discovery), a vehicle of implementations (integration andapplication), and a bridge between faculty and the students, graduate and undergraduatesalike (teaching). Their efforts of generating and improving the quality of scholarships
AC 2008-2680: TEACHING CONCEPTS OF LEAN MANUFACTURINGTHROUGH A HANDS-ON LABORATORY COURSEArun Nambiar, University of Puerto Rico-Mayaguez Arun received his Bachelor's Degree in Mechanical Engineering from Birla Institute of Technology and Science, Pilani, India in 1997 and Master's Degree in Industrial Engineering from Ohio University, Athens, OH in 2004. He went on to receive his Doctoral Degree in Integrated Engineering (with an Industrial Engineering concentration) from Ohio University, Athens, OH in 2007. His research interests include production, planning and control of manufacturing systems, application of lean principles, study of discrete-event systems and cost estimation for various
integral part of all engineering programs; in fact, it is not even a standard part of many Civil Engineering (CE) programs. Plane surveying, the determination of the location of points on or near the surface of the earth, is rapidly becoming a lost art in the civil engineering curriculum. This paper is not an attempt to resurrect surveying in the modern CE curriculum. It looks at surveying field work in an historical perspective; to highlight changes in the art of surveying and how they have impacted both the teaching and practice of surveying, and to point out conceptual features of surveying field work and show how selected activities were particularly suited to teaching fundamental concepts applicable to a wide range of
senior-level students with an opportunity tolearn more about innovation and entrepreneurship. In their final year of undergraduatestudy, groups of three to four students come together as new start up companies thatcomplete the two-semester capstone design requirements by transitioning from an Idea toa fully functional Prototype (I2P). Most of these projects are now externally sponsoredby companies that are trying to increase their design bandwidth, jumpstart a new productidea, or in some cases become more involved with students to develop a better pipelinefor new hires. Intellectual property developed by these student companies is transferredto the Texas A&M System Office of Technology Commercialization that manages thelicensing of the IP to
acceptance of programs of less than six weeks, stressing the characteristics ofgood program design. These were: • Unassailable academic integrity • Integration into the curriculum Page 13.795.3 • Affordable program design • Good pre-departure orientation and preparation • Faculty buy-in and participation • Interaction with the host community • Incorporation of local language • Opportunities for cultural enrichment, and a faculty leader trained to provide on-site interpretation and support • A safe and secure environment • Competent, experienced staff • Delivering what is promised (meeting expectations