laboratories, project- based learning, and practicum-based assessment. Dr. Ertekin serves as the faculty advisor for the student chapter of the Society of Manufacturing Engineers (S058) and is a member of the College’s Undergradu- ate Curriculum Committee. Involved in research, Ertekin has received funding from the National Science Foundation (NSF), private foundations, and industry. His research has focused on the improvement of manufacturing laboratories and curricula and the adoption of process simulation into machining and addi- tive manufacturing practices. His areas of expertise are in CAD/CAM, manufacturing processes, machine and process design with CAE methods, additive and subtractive manufacturing, quality control
introduced inengineering education in a variety of ways due to workforce demands. However, thedevelopment of engineers' communication skills has been inhibited by "students' attitudes tocommunication, insufficient course content, deficient or inappropriate teaching methods, andlack of opportunity for engineering students to practice communication skills" [5, pp. 91].Understanding these roadblocks along with past success stories can help inform futuredevelopment of communication skills in engineering students. Although many universityengineering programs provide communication related courses, Campi and colleagues emphasizethat it is imperative to provide students with the opportunity to practice applying communicationskills to realistic technical
Paper ID #37873Developing a New Course in Design, Construction, and SocietyDr. Luciana Debs, Purdue University Luciana Debs, is an Assistant Professor of Construction Management in the School Construction Man- agement Technology at Purdue University. She received her PhD from Purdue University Main Campus, her MS from the Technical Research Institute of Sao Paulo. Her current research includes the technol- ogy and teaching within design and construction and the impact of Construction and Education 4.0 in undergraduate curriculum.Dr. Claudio Martani, Purdue University Claudio Martani is Assistant Professor at the
Paper ID #39694Student Self-Assessment of Knowledge to Encourage IndividualUnderstanding of StrengthsDr. Megan Prygoski, Purdue University at West Lafayette (Polytechnic) Dr. Prygoski has been teaching Mechanical Engineering Technology at Purdue University’s South Bend campus for nine years. She has her B.S. in Mechanical Engineering from the University of Arizona and a M.S. and Ph.D. in Mechanical Engineering from the University of Notre Dame. ©American Society for Engineering Education, 2023 Student Self-Assessment of Knowledge to Increase Understanding of
approach of Experiential Learning (EL), Entrepreneurial Mindset(EM), and real-world application using the entrepreneurially minded curriculum, for engineeringand technology courses.The purpose of this study is to highlight findings and lessons learned because of integrating anentrepreneurially minded interdisciplinary project (including bio-inspired design and STEAM)into the engineering technology classroom. Specifically, curriculum changes were implementedinto a course on programming industrial robots (as part of the minor in robotics). This course isdesigned for teaching technology students how to install, maintain, and work with industrialrobots through real-world applications. This course also assists students in discovering thecapability of
authorityfigure, who traditionally was male. Authority has been studied related to other issues likeclassroom and laboratory work, but reading/following directions is not central to these studies[42]. A third possible explanation is that female students who self-select into engineering arebetter students on average than male students, which would involve a subset from other studiesof first-year college students [43]. This third hypothesis could be examined using standardizedtest scores or high school grades or rank. Since most students in the MEB course are in theirsecond semester of their engineering education, only one semester of grade data is available fromtheir university transcripts.When focusing on higher education, few examples of
focus on tissue engineering and peripheral nerve regeneration. At WSU, she taught BE 1300 (”Materials Science for Engineering Ap- plications”) and BME 1910/20/25 (”Biomedical Engineering Design Laboratory”). Melissa also holds a Bachelor’s in Materials Science & Engineering from the University of Michigan and loves being back and teaching at her alma mater! ©American Society for Engineering Education, 2023 Work-in-Progress: KLIQED, A Feedback Tool for Fostering Peer Engagement during Student Oral PresentationsAbstractOral communication skills are important in all academic disciplines (e.g. liberalarts, science, and engineering) and hiring decisions. In
are insights from and methodologies associated with the psychological sciences and digital human- ities. Rockwell is a Research Scientist in the Department of Engineering Education at Virginia Tech. Before moving to Virginia, he was a Research Assistant Professor in the Department of Humanities, Arts, and Social Sciences at the Colorado School of Mines, Lecturer in the Department of Values, Technol- ogy, and Innovation, at Delft University of Technology, Associate Teaching Professor at the University of Michigan-Shanghai Jiao Tong University Joint Institute, and Research Fellow in the Institute of Social Cognition and Decision-making, Shanghai Jiao Tong University. Rockwell holds a PhD from Purdue University
the request to post the link on the undergraduateengineering course they were teaching. Participants were then purposefully selected based on theirresponses to the screening survey. Data from these interviews were transcribed, identified, andanalyzed. As suggested by Creswell and Poth [38], and guided by Saldaña [39], a thematic analysisof the interview data was conducted based on consensus between two coders. The thematicanalysis helped identify patterns in the interview data relating to the important factors perceivedby undergraduate engineering students to be important to their MHW. The resultant eleven themeswere then re-grouped and conceptualized into seven factors as can be seen in Figure 1. Please readour published work about this
students, and saving faculty time. Stylus Publishing, LLC, 2015. [9] Kate J McKnelly, William J Howitz, Taylor A Thane, and Ren´ee D Link. Specifications grading at scale: Improved letter grades and grading-related interactions in a course with over 1,000 students. 2022.[10] William J. Howitz, Kate J. McKnelly, and Ren´ee D. Link. Developing and implementing a specifications grading system in an organic chemistry laboratory course. Journal of Chemical Education, 98(2):385–394, 2021. doi: 10.1021/acs.jchemed.0c00450.[11] Dennis Earl. Two years of specifications grading in philosophy. Teaching Philosophy, 45(1):23–64, 2022.[12] Ella Tuson and Tim Hickey. Mastery learning and specs grading in discrete math. In Proceedings of the 27th
Paper ID #39759Development of entrepreneurial mindset-driven training materials forundergraduate researchersDr. Maysam Nezafati, Georgia Institute of Technology I am a lecturer in the department of biomedical engineering at Georgia institute of technology /Emory University. I have been working on educational research since 2016. My main focus is on problem based learning core courses. But specifically I work onDr. Irene Reizman, Rose-Hulman Institute of Technology Irene M.B. Reizman is an Associate Professor in the Department of Chemical Engineering and the Al- fred R. Schmidt Endowed Chair for Excellence in Teaching at the
to organize thisvaluable work by characterizing the nature and effects of the landscape of stressors experiencedby doctoral engineering students. In Year 1 of this project [21], we employed a longitudinalmixed methods study design to identify the most common and severe stressors experienced by acohort of students at one institution. Drawing from the results of this study and a review of theliterature on graduate student stressors, we developed the Stressors for Doctoral StudentsQuestionnaire for Engineering (SDSQ-E) and administered it twice, in fall 2022 and in spring2023. The SDSQ-E measures the severity and frequency of stressors including advisor-relatedstressors, class-taking stressors, research or laboratory stressors, campus life and
Paper ID #38503Developing a Global Competency Mindset in an International, Faculty-ledProgram in Brazil Focused on Sustainable EnergyDr. Courtney Pfluger, Northeastern University Dr. Courtney Pfluger took a position in Fall 2011 as an Assistant Teaching Professor at Northeastern University as a part of the First Year Engineering Faculty and affiliated Faculty in the Chemical Engineer- ing Department. Dr. Pfluger redesigned and piloted the first-year curriculum which included engineering design and computational problem solving using the Engineering Grand Challenges as real-world appli- cations of global issues. She
Paper ID #36891Say Yes to the Stress: Escape Rooms in Civil Engineering ClassroomsMajor Brett Rocha, United States Military Academy MAJ Brett Rocha is a second year instructor at the US Military Academy in the Department of Civil and Mechanical Engineering. She received her B.S. in Civil Engineering from USMA in 2012, her M.S. in Engineering Management from Missouri University of Science and Technology in 2016, and her M.S. in Civil Engineering from University of Central Florida in 2021. She teaches mechanics of materials, design of steel structures, and design of concrete structures.Dr. Kevin Francis McMullen, United States
-Milwaukee, Milwaukee, WI Grad: 08/2014 Master of Science in Mechanical Engineering, Texas A&M University, College Station, TX Grad: 08/2007 BachelorDr. Phapanin Charoenphol, Texas A&M University Phapanin Charoenphol is an Assistant Professor of Instruction in the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M University. She earned her M.S., and Ph.D. from the University of Michigan, Ann Arbor. She teaches thermodynamics, fluid mechanics, engineering laboratory, and senior design studio courses. Her research interests include engineering education and targeted drug delivery. In 2022, she was awarded the ASME Best Teacher Award and earned the ACUE Certificate in Effective College
IIT Delhi for undergraduate studies and Cornell University for graduate work. He worked for nearly 15 years as a materials scientist at the DuPont company and moved in 2004 to Lehigh University. His research interests are in interfacial mechanical properties.Zilong Pan, Lehigh University Zilong Pan is an assistant professor of teaching, learning and technology, his research focuses on emerging educational technologies and innovative methodological approaches in educational practices and studies in STEAM (science, technology, engineering, arts, and mathematics) disciplines.Nathan Urban, Lehigh University Nathan Urban is Provost and Senior Vice President for Academic Affairs at Lehigh University. Urban earned his PhD
Norwegian Centre for Autonomous Marine Operations and Systems (a Centre of Excellence for re- search in Norway) on locomotion control of ground and swimming snake robots. In 2011, he received the Masters degree from the University of Alberta, Canada where he was with the Telerobotic & Biorobotic Systems Laboratory. He joined the Locomotor Control Systems Laboratory at the University of Texas, Dallas, as a Postdoctoral Research Associate in November 2016, where he was using neuromechanical principles in the context of feedback control theory to design wearable robot control systems. His research interests include robotics, control systems, and cyber-physical systems.Prof. Destin Heilman
retirement. At Baylor University since 1998, he teaches courses in fluid mechanics, energy systems, propulsion sys- tems, heat transfer, and aeronautics. Research interests include renewable energy, small wind turbine aerodynamics, and noise generation as it applies to the urban environment. Currently, he designs small Unmanned Aerial System propellers, reducing noise and power requirements.Dr. Liping Liu, Lawrence Technological University Liping Liu is an associate professor in the A. Leon Linton Department of Mechanical Engineering at Lawrence Technological University. She earned her Ph.D. degree in Mechanical Engineering from Uni- versity of Illinois at Urbana-Champaign in 2011. Her researDr. Anthony M. Jacobi
. Richards, “Curriculum Approaches in Language Teaching: Forward, Central, and Backward Design,” RELC J., vol. 44, no. 1, pp. 5–33, Apr. 2013, doi: 10.1177/0033688212473293.[10] J. Emory, “Understanding Backward Design to Strengthen Curricular Models,” Nurse Educ., vol. 39, no. 3, p. 122, Jun. 2014, doi: 10.1097/NNE.0000000000000034.[11] K. Y. Neiles and K. Arnett, “Backward Design of Chemistry Laboratories: A Primer,” J. Chem. Educ., vol. 98, no. 9, pp. 2829–2839, Sep. 2021, doi: 10.1021/acs.jchemed.1c00443.[12] K. M. Cooper, P. A. G. Soneral, and S. E. Brownell, “Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences,” J. Microbiol
Paper ID #38654Board 88: Work in Progress: Impact of Electronics Design Experience onNon-majors’ Self-efficacy and IdentityTom J. Zajdel, Carnegie Mellon University Tom Zajdel is an Assistant Teaching Professor in electrical and computer engineering at Carnegie Mellon University. Dr. Zajdel is interested in how students become motivated to study electronics and engineer- ing. He has taught circuits, amateur radio, introductory mechanics, technical writing, and engineering de- sign. Before joining CMU, Tom was a postdoctoral researcher at Princeton University, where he worked on electrical sheep-herding of biological
is devoid ofresearch that definitively identifies the most effective pedagogical method for introducingstudents to engineering ethics” [4, p. 677]. Perhaps most tellingly, the only clear qualification forteaching engineering ethics is being “enthusiastic about and comfortable with discussing ethicalissues and the social implications of engineering” [4, p. 680]. Barry and Herkert express this lackof clarity when they conclude that “although a background and experience in philosophy andengineering might make an individual well prepared to teach engineering ethics, a well-preparedinstructor from history of science or technology, technical communications, science andtechnology studies, and so forth could be equally qualified” [4, p. 680]. This
large public state university and taking part in the same researchproject. The internship was an 8-week program in the Biomedical Engineering (BME)Department funded by the Massachusetts Life Science Center (MLSC). All three students wereworking in the same lab co-hosted and mentored by the two laboratory Principal Investigators, aswell as undergraduate and graduate students in the lab. In-depth interviews with the three internsand their parents/caregivers were conducted and analyzed to understand parental relationships,mentorship relationships, and components of the home environment in developing STEMidentity and interest. Faculty mentors were also interviewed and provided perspectives on skillsets and confidence coming into the internship and
statistical design methods combined withfundamental naval architecture principles leading to an individual design by the end of the firstsemester. Students then select one of their designs and build it during the spring. Coursegraduates have the option to serve as mentors, teaching aides and course instructors, buildingtheir leadership, technical and communication skills. At the United States Naval Academy(USNA), the fourth-year students build either an off-the-shelf design or one of their own. Thestudents build their boat from construction plans through finishing with decreasing amounts ofguidance from instructors. By the end of the course, students can read plans and determine viableconstruction steps independently and recognize when a design might
without using the scientific method and experimentation in laboratories, iv)separating mathematics from science, and v) specializing teachers in their disciplines withoutpromoting multidisciplinary teamwork.The holistic approach of the four STEM disciplines seeks to remove barriers between thesedisciplines. STEM education seeks to promote educational transformations in teaching to achievedigital literacy, in educational objectives to develop new skills and knowledge, in educationalinstitutions to improve infrastructure and management, in the role of the teacher to become afacilitator, in students to learn, in educational resources to adapt them to greater interaction andaccess to more information [35].From the above definitions, it is necessary
discussing these issues [1]. 4. Create case studies. Consider what pedagogical approaches may be effective to achieve the envisioned competencies and informed decision making. Case studies may be a productive direction in which to begin. It could be useful to examine what case studies might be suitable for teaching in this area [1]. 5. Develop new dissemination approaches. Developing literature accessible to both the public and educators should be a priority. There is a need for more widespread promotion of the division’s work. Materials that empower individuals to make more informed decisions on technological issues should be disseminated widely. The division should consider a working group to examine
around 14 years of teaching experience in undergraduate engineering and technology education. His research interest is to explore, understand, and enhance ways to promote self-directed, self-regulated life-long learning among the undergraduate engineering student population. Various pieces of his research efforts are intended to converge into an inclusive instructional design for undergraduate engineering students. ©American Society for Engineering Education, 2023 1 Institutional Role in the Mental Health and Wellbeing of Undergraduate Engineering Students: Student
of Philosophy) in Electrical Engineering at the University of New South Wales, Australia, in 2019. He is cur- rently a Ph.D. student in the Energy Systems, School of Electrical Engineering and Telecommunications, UNSW. His research interests include power engineering education, curriculum design and development, and condition monitoring of power system equipment.Dr. Jayashri Ravishankar, University of New South Wales A/Prof Jayashri Ravishankar is a Scientia Education Fellow and Associate Dean (Education) in the Fac- ulty of Engineering at the University of New South Wales (UNSW), Sydney. Her teaching and research interests include power system modelling, analysis and control, renewable energy integration, smart
Paper ID #37173GIFTS: Building a sense of connection to campus and engineering identitythrough information literacyDr. Jessica Ohanian Perez, California State Polytechnic University, Pomona Jessica Ohanian Perez is an assistant professor in Electromechanical Engineering Technology at Califor- nia State Polytechnic University, Pomona with a focus on STEM pedagogy. Jessica earned her doctorate in education, teaching, learning and culture from Claremont Graduate UniversityMr. Paul Hottinger, California State Polytechnic University, Pomona Paul R. Hottinger is an associate librarian in the Research and Instruction Services unit
with the handling and correct application of tools, instruments, and laboratory equipment. • encourage group work and student integration. • develop competence in oral and written communication. • encourage the search for technological innovations in the development of engineering projects.Figure 1 - Objectives of an integrated project This work aims to present the details of the integrated and multidisciplinary project,applied from 2019 to 2022 in the Control and Automation Engineering course at the MauáInstitute of Technology. During this period, around 40 students per year were analyzed,always from the 4th year of the course, divided into approximately 10 teams per year
professor and was promoted in 2012 to associate professor. He has over 25 combined years of increasing responsibilities in industry and in academia, in-cluding at the Centre for Development of Telematics (C-DOT), a telecommunications technology arm of the Indian government, the Indian Institute of Science (IISc.), Bangalore, and Villanova University, PA. Nathan received his BS from the University of Mysore, a postgraduate diploma from the Indian Institute of Science, an MS from Louisiana State University, and a PhD from Drexel University. He worked in electronic packaging in C-DOT and then as a scientific assistant in the robotics laboratory at IISc. in Bangalore, India, and as a postdoc at the University of Pennsylvania in