, A. Dukes, and R. Clark, “Student performance in partially flipped ece laboratory classes,” in ASEE Virtual Annual Conference, Jun 2020.[34] Y. Tsividis, “Teaching circuits and electronics to first-year students,” in IEEE International Symposium on Circuits and Systems, vol. 1, 1998, pp. 424–427.[35] ——, “Turning students on to circuits,” IEEE Solid-State Circuits Society Newsletter, vol. 13, no. 1, pp. 6–9, 2008.[36] “Analog discovery 3 reference manual,” https://digilent.com/reference/test-and-measurement/analog-discovery-3/reference-manual, last downloaded, February 7, 2024.[37] M. Radu, C. S. Cole, J. Harris, and M. Dabacan, “Use of electronics explorer board in electrical engineering education,” in American
University, where he also served as a research assistant at the Environmental Pollution Research unit, in Ile-Ife, Nigeria. As part of his contribution to science and engineering, Pelumi has taught as a teaching assistant both at Morgan State University and Obafemi Awolowo University. With passion to communicate research findings and gleaned from experts in the field as he advances his career, Olaitan has attended several in-persons and virtual conferences and workshop, and at some of them, made presentation on findings on air pollution, waste water reuse, and heavy metal contamination.Adebayo Iyanuoluwa Olude, Morgan State University Adebayo Olude is a doctoral student and research assistant at Morgan State University’s
there are a myriad of reasonsthat instructors may decide to forgo live demonstrations, two common reasons for doing so arethat they doubt the effectiveness of live demonstrations, or that the time required to develop andimplement an effective demonstration prohibits instructors from utilizing them.As a result of the COVID-19 pandemic, instructors around the world were forced to adapt theircourses to be delivered remotely. While the vast majority of classes have returned to traditionalin-person formats, instructors retain the skills required to produce effective teaching videos. Ithas been shown that online laboratory activities can have some unique advantages [1]. Thispresents an opportunity for instructors to develop pre-recorded demonstration
got their hands on a physical circuit was in a subsequent course, ECEN 2270:Electronics Design Lab (EDL), in which students build an autonomous car that navigates a routedefined by a line on the floor. While ECEN 2270 is a hands-on laboratory course, the exercises areall directed toward building a product, not exploring the fundamental principles of circuits.When we were asked to teach the ECEN 2250 course for the first time, we believed that it wasimportant to include a hands-on laboratory experience. However, we were constrained in not beingable to change the course from a 3 to a 4-credits, could not change the meeting pattern of three,50-minute sessions per week, and did not have physical laboratory space available for the 138students to
Engineering Education, 2024 Virtual Reality Simulation of Wind TurbineAbstractThis research study presents an innovative virtual reality (VR) laboratory module aimed atenhancing green manufacturing education, particularly focusing on the intricacies of wind turbineefficiency. This VR-based educational tool provides a hands-on learning experience that simulatesthe operation of a wind turbine, allowing students to explore the dynamics of wind energyconversion. Using VR controllers and headsets, participants can interact with a virtual environmentthat includes a vertical wind turbine and a fan blower, complete with start/stop buttons and controlsfor adjusting wind speed.The virtual lab is built on the Unity 3D platform
Paper ID #44150Board 127: Work in Progress: Strategizing the Integration of VR and AR inSTEM Education: Aligning Educational, Organizational, and TechnologicalStrategiesDr. Amirmasoud Momenipour, Rose-Hulman Institute of Technology Amir Momenipour, PhD in Industrial and Systems Engineering, is an Assistant Professor of Engineering Management at Rose-Hulman Institute of Technology with interests and expertise in teaching human factors, user experience, and work analysis and design. Dr. Momenipour is a member of the Institute of Industrial and Systems Engineers (IISE), and Human Factors and Ergonomics Society.Dr. Priyadarshini
Paper ID #42202A Summer Leader Experience for Rising High School Seniors – Integratingan Introduction to Environmental Science & EngineeringKimberly Quell, Kimberly Quell is a laboratory manager in the Department of Geography and Environmental Engineering at the United States Military Academy. She graduated with an M.E., Environmental Engineering, Stevens Institute of Technology, 2023 and B.S., Environmental Science, SUNY-Environmental Science and Forestry, 2010Cristian Robbins, United States Military AcademyKathryn Blair NewhartCol. Andrew Ross Pfluger, United States Military Academy Colonel Andrew Pfluger, U.S. Army, is
early so that the project and all the clerical type stuff can be taken care of ahead of time. Better organization and less last minute decisions would really help to improve this course.” “The lab course lost value after the trip since we were done with the project” “Course should only be 8 weeks long if there is only one trip during spring break”V. Conclusions, Lessons Learned, and Future Work:Teaching the Global Engineering Laboratory component for the first time was a transformativeexperience that significantly enhanced the first author’s teaching skills. The development of thelaboratory content and structure allowed the refinement of the instructional approach, focusing onthe Inquiry-based learning model. This model, centered around student
engineering collaboration have been proposed [18, 19].Previously, we reported on educational innovations to teach students of engineering aboutdevices with biomedical applications [20, 21, 22]. These teaching efforts included thedevelopment of devices in the laboratory [23], the deployment of these devices to the field (inthis case, the community environment) [24], and the ongoing improvement of devices to promotehuman health [25]. These efforts incorporated high school teachers as well as historicallyunderrepresented student populations to learn about and become involved in device development[26]. These prior efforts targeted long-standing problems of sustainable development includingsecure access to safe supplies of food and water [27, 28, 29, 30
the lab. Following introductions, the 15 students were split intotwo groups: Group A (8) engaged in the laboratory experiment first while Group B (7) was takenon the engineering tour first. This arrangement was mirrored at the 1 ½ hour mark. Thelaboratory experiment was led by a university-trained undergraduate teaching assistant. Studentswere told that they should try to complete at least one of the experimental exercises, but wereencouraged to attempt as many as possible. Student learning was self-regulated: trying first anddiscovering the results. The tour was led by a trained undergraduate university student tourguide.The Student Laboratory Experience: Results and Feedback from the ParticipantsOf the 15 student participants, 87% started
University of Illinois Urbana-Champaign. We examined course materials to identify where writing is explicitly or implicitly referenced, the genres that were assigned, and writing concepts that were represented. Analyzing course materials allowed us to identify a wide range of activities and assignments related to writing. We observed that implicit references to writing are prevalent, writing activities are weighted toward upper-level classes, and the most common genres are related to laboratory activities. Writing concepts that occurred frequently in upper-level laboratory courses correspond to disciplinary values of precision and clarity, while concepts of novelty and evidence were infrequent. This
GUIDING STUDENTS IN THEIR HANDS-ON WORKAs mentioned in previous section, hands-on work is an integral part of both college educationand professional training. Although hands-on work can be incorporated into teaching,laboratories remain the predominant method for practical learning [2] . Consequently, mostengineering courses are delivered through lectures supplemented by lab sections. Typically,students are provided with a lab manual to guide them through specific tasks relevant to thelecture topics. Lab manuals come in various formats; some publishers offer hardcopy manualsalongside textbooks. While these manuals are user-friendly and directly linked to the coursematerial, they may present drawbacks. For instance, the equipment specified in the
coping mechanism developed during thecivil war and its aftermath. This might surprise people from different cultures, even Hispanicfriends, who may perceive it as not taking things seriously. However, it is often a way of dealingwith serious topics.In my teaching role for a biological engineering laboratory and assisting in other courses, I haveobserved that Guatemalans, and maybe other internationals, often use English as if translatingdirectly from Spanish, leading to amusing situations and further discussions. In engineering, thepragmatic and straightforward nature of scientific topics helps, though it gets challenging whenadding nuance or developing narratives for experiments or engineering situations.Graduate school in English has been a
is not an ABET requirement.Traditionally, surveying courses have emphasized lecture sessions covering surveying principlesand methodologies, complemented by laboratory exercises particular to various surveyingmethods and utilizing surveying instruments [5]. However, alongside this conventional approach,PBL is being introduced, offering students hands-on experience in applying theoreticalknowledge to real-world scenarios [4]. PBL encourages critical thinking, interdisciplinarycollaboration, and the development of essential professional skills such as problem-solving,communication, and project management. Prince and Felder present strong evidence thatinductive teaching methods are more effective than traditional deductive teaching methods
Publishing, 2021.16. Deniz, Sabri, Ulf Christian Müller, Ivo Steiner, and Thomas Sergi. "Online (remote) teaching for laboratory based courses using “digital twins” of the experiments." Journal of Engineering for Gas Turbines and Power 144, no. 5 (2022): 051016.17. Maksimović, Mirjana, and Nikola Davidović. "The role of Digital Twin technology in transforming engineering education." In 9th International scientific conference Technics and Informatics in Education, pp. 264-270. 2022.18. Zacher, Serge. "Digital twins for education and study of engineering sciences." International Journal on Engineering, Science and Technology 2, no. 2 (2020): 61-69.19. Sepasgozar, Samad ME. "Digital twin and web-based virtual gaming technologies for
Engineering Education, 2024 Generative Learning in Two Community-Based Experiential Undergraduate Courses This research to practice paper analyzes the innovative teaching elements of twocommunity-based experiential undergraduate courses. Experiential learning on its own shifts aclass from a more traditional format to “an approach that is semi-structured and requires studentsto cooperate and learn from one another through direct experiences tied to real world problems”[1, p. 4]. When engaging with the community through experiential learning, additionalperspectives are integrated into learning with the intent that all parties will benefit. This can beachieved through multiple course designs, two of
computer networks and communications, especially in wireless communications and wireless sensor networks. Her research has been published in leading scholarly journals in engineering, including the IEEE Transactions on Communications, the IEEE/ACM Transactions on Networking, IEEE Transactions on Education and the International Journal of Modeling and Simulation. Dr. Yaprak’s research has been funded by grants awarded her from the National Science Foundation, the US Department of Energy, NASA, the US Navy, and the business community. She has held 8 research fellowships at NASA research centers (John Glenn Laboratory at Case Western, Jet Propulsion Laboratory at Cal Tech, Ames Research Center at Stanford, and the
experiences and observations, this paper delves into crucial strate-gies for success in teaching, research, and service, offering essential principles to guide new facultymembers toward a successful start in academia. The paper discusses strategies for teaching acrossvarious undergraduate levels, establishing and cultivating research groups within undergraduate-focused programs, and actively engaging in service roles within the academic community. Addi-tionally, it emphasizes the importance of advising, mentorship, self-care, and achieving work-lifebalance, particularly with regard to the unique experiences and challenges faced by female facultymembers. By providing practical tools, resources, and best practices, this paper aims to empowernew faculty
merits and rigor ofactive learning over passive learning as well as providing faculty with ongoing pedagogicaltraining will be necessary to realize the advantages of active learning in higher education.Experiment-centric pedagogy is an innovative active learning pedagogy that has transformedlearning and teaching experience in the classroom and laboratory. As described by Authors [10],experiment-centric pedagogy places students at the center of the learning process. Experiment-centric pedagogy (ECP) focuses on inexpensive and safe hands-on tools and activities to promotelearning in STEM subjects. As presented by Connor et al. [5], and Authors [6], ECP engageslearners and improves their comprehension, familiarity, and retention of knowledge
Paper ID #42467Development of an Introduction to Sustainable Engineering Course as a ChemicalEngineering ElectiveDr. Heather L. Walker, University of Arkansas Dr. Walker is a Teaching Assistant Professor and the Associate Department Head for the Undergraduate Program in the Ralph E. Martin Department of Chemical Engineering at the University of Arkansas. Her research interests include engineering education, increasing student engagement and student advising.Dr. Edgar C Clausen, University of Arkansas Dr. Clausen is a University Professor in the Ralph E. Martin Department of Chemical Engineering at the University of Arkansas
in the University of Michigan’s College of Engineering Technical Communication Program. He regularly teaches first-year, intermediate, and senior writing courses for students in all engineering disciplines, but especially Mechanical Engineering and Computer Science Engineering. His research focuses on the interplay between identity, experience, and agency in language and literacy practices in technical and workplace communication contexts through translingual and linguistic justice frameworks. ©American Society for Engineering Education, 2024 Mechanical engineering reasoning diagram: How can modeling engineering thinking support learning in writing intensive labs?The
Paper ID #44272Integrating Computational and Physical Lab Modules in Materials Scienceand EngineeringJonathan R. Brown, The Ohio State University Jonathan Brown (B.S., M.S. Mathematics, New Mexico Institute of Mining and Technology; Ph.D. Materials Engineering, New Mexico Institute of Mining and Technology) is an Assistant Professor of Practice in the Department of Materials Science and Engineering at The Ohio State University. His background is in computer simulations and theory of polymer glasses and block copolymers for energy applications. He teaches introduction to materials science and engineering and computational
Society for Engineering Education, 2024 Pull, Twist, and Break: Helping Engineering Students Visualize Material FailuresAbstractThe materials tested in basic engineering mechanics courses, such as steel and aluminum, havebeen well studied and have consistent material properties. Experimentally testing these materialsin a laboratory setting helps students visualize the difference between the failure behavior ofductile and brittle materials. However, there are thousands of other materials which arecommonly used in industry and academia which exhibit different behaviors or are moreinconsistent between samples. These materials may behave differently when subjected todifferent loading conditions such as tension
-19-public-health- emergency.html[20] D. J. Cheney, P.L. Dickrell, L. Virguez. “Online versus flipped classroom: A comparison of hands-on skills development in an introductory circuits course,” Proceedings of the 126th American Society for Engineering Education (ASEE) Annual Conference and Tampa, FL, MD, USA. 2019.[21] *S. Das, C. Chin, S. Hill. “Development of open-source comprehensive circuit analysis laboratory instructional resources for improved student competence,” Proceedings of the 129th American Society for Engineering Education (ASEE) Annual Conference and Exposition, Minneapolis, MN, USA, 2022. https://peer.asee.org/40925[22] C. A. Berry. “Teaching an electrical circuits course online,” Proceedings of
developadvanced manufacturing research and a rapid prototyping-based teaching laboratory, materialextrusion and material jetting-based AM machines were acquired. The overall goal of thisinitiative is to support design and manufacturing-based educational activities and createopportunities to engage undergraduate students in research. However, there were no such formalcourse offerings on the AM that would allow students to learn and engage in the full spectrum ofthe AM process such as 3D design with optimization in mind to hands-on experience inmanufacturing and testing of these designs. In Spring 2023, a senior elective on AM was offeredfor the first time in the Mechanical Engineering Program. In order to fulfill the growing demandfor a skilled workforce
World War II. The need for militarydevelopment and space exploration during the Cold War era fueled a marked shift in the natureof engineering degrees with a heavy engineering science component [1], [2]. As the engineeringprograms became more science-heavy, ET programs started being established to prepareprofessionals who were trained in specific domains of technology and could fill the need for“skilled crafts and the highly scientific professions” (Smith and Lipsett, 1956, as cited in [1]).As a result, one significant aspect of the ET degree is its emphasis on practical and laboratory-based instruction and relatively less focus on advanced mathematics. As a report by the NationalAcademy of Engineering notes, “the pedigree of ET is rooted in
culture as a starting point, J. Settlage, S. A. Southerland, L. K. Smetana, andP. S. Lottero-Perdue (Eds.), Routledge, 2017, pp. 207–266.[19] T. Anderson, and J. Shattuck, “Design-based research: A decade of progress in educationresearch?” Educational researcher, vol. 41, no. 1, pp. 16-25, 2012.[20] C. E. Mundy, M. Potgieter, and M. K. Seery, “A design-based research approach toimproving pedagogy in the teaching laboratory,” Chemistry Education Research and Practice,vol. 25, no. 1, pp. 266-275, 2024.[21] M. Schreier, “Qualitative Content Analysis” in The SAGE Handbook of Qualitative DataAnalysis, pp. 170-183, 2014.[22] S. Stemler, “An overview of content analysis,” Practical assessment, research, andevaluation, vol. 7, no. 1, pp. 1-6, 2001.[23] T
Paper ID #41567Re-designing a Technical Communications Course to Address Scaling ChallengesDr. Jennifer Retherford, University of Tennessee at Knoxville Dr. Retherford is an alumna of the University of Nebraska, Omaha, and received her graduate degrees from Vanderbilt University. She currently teaches a variety of courses supporting the department of Civil & Environmental Engineering at the University ofDr. Sarah Mobley, University of Tennessee at Knoxville Sarah J. Mobley is a Lecturer in Civil and Environmental Engineering at the University of Tennessee, Knoxville. She holds a Bachelor of Science in Civil Engineering
Paper ID #41336Enhancing Mechanical Vibration Education through Virtual Labs: A Focuson Rotor BalancingDr. Carmen Maria Muller-Karger, Florida International University Associate Teaching Professor at the Mechanical Engineering Department at Florida International University. Full professor at Simon Bolivar University, Venezuela from 2002 to 2016. With a Bachelor’s degree in Mechanical Engineering, a M.Sc. in Mechanical Engineering in the area of Rotodynamics from the University of Virginia, and a Ph.D. in Engineering Science in the area of Biomechanics from the Central University of Venezuela. Main interest in Simulation in
the pioneering Ph.D. scholars in engineering education at UNSW Engineering, his research aims to create and implement a curriculum framework for electrical power engineering programs to enhance the employability of graduates. Mr. Hua Chai also demonstrates a strong commitment to teaching as an engineering educator. His recognition is highlighted by Associate Fellowship of the Higher Education Academy, Student’s Choice Teaching Award, and UNSW Award for Outstanding Contributions to Student Learning (Sessional Staff).Prof. Jayashri Ravishankar, University of New South Wales Professor Jayashri Ravishankar is a Scientia Education Fellow and Associate Dean (Education) in the Faculty of Engineering at the University of