. Page 22.1063.1 c American Society for Engineering Education, 2011 Microwave Plasma Cleaner Design for Semiconductor Fabrication and Materials Processing Laboratory Use AbstractThis paper describes a microwave plasma cleaner designed and built for use in integrated circuitfabrication and materials processing laboratories. It is a much less expensive alternative to RFplasma cleaners because of the fact that very inexpensive and readily available householdmicrowave oven is utilized to generate the microwave power to produce the plasma in theprocess chamber. The process chamber is an inverted Pyrex bowl placed on a metal base plateand is evacuated by a
AC 2011-75: ENHANCING STUDENT LEARNING THROUGH HANDS-ON LABORATORY EXPERIMENTS ON RENEWABLE ENERGY SOURCESOxana S Pantchenko, University of California at Santa Cruz Oxana Pantchenko received B.S. degree and M.S. degree in electrical engineering from University of Cal- ifornia, Santa Cruz in 2006 and 2008 respectively. She is currently pursuing her PhD degree in Electrical Engineering from University of California, Santa Cruz. Her interests include education, renewable energy sources, sustainability engineering and ecological design.Daniel Scott Tate, University of California, Santa Cruz Daniel Tate is finishing his B.S. degree in Bioengineering from the Univserity of California, Santa Cruz. He will be attending law
Experimentation (ME310) and EngineeringExperimentation (ME311). Engineering Experimentation is an advanced laboratory coursewith the specific goal to enhance the students’ abilities in experimental design and analysis topartially satisfy the ABET’s learning outcome. Experimental design relies on principles ofcombinatorial mathematics such as combination, permutation, factorial, blocking, Latin square,etc. The analysis of experiments uses theories from statistics such as hypothesis, t-test, ANOVA,etc.It is often hard for the students to manually design experimental layouts if they do not havesufficient combinatorial mathematics background. The theories of statistical analysis arerelatively easy for students to grasp, but the calculations can be
AC 2011-254: FIVE FORCED-VIBRATION LABORATORY EXPERIMENTSUSING TWO LUMPED MASS APPARATUSES WITH RESEARCH CAL-IBER ACCELEROMETERS AND ANALYZERRichard J. Ruhala, Southern Polytechnic State University Richard Ruhala earned his BSME from Michigan State in 1991 and his PhD in Acoustics from The Pennsylvania State University in 1999. He has 3 years industrial experience at General Motors and 3 years at Lucent Technologies. He was an Assistant Professor in the Engineering Department at the University of Southern Indiana before joining the faculty at Southern Polytechnic State University in 2010 as an Associate Professor, where he also serves as director for their new mechanical engineering program. He has taught a wide
of work and power; electrical, mechanical, and chemical energy;and practical issues of batteries, fuel cells, and robot performance.LecturesThe course began with an introductory lecture giving the big picture followed by six weeks oflectures focused on practical knowledge required for the laboratories and programming. Thesecond half of the class largely consisted of guest lectures as the students prepared for theirdesign competition. Page 22.271.4Labs, Problem Sets & ProjectsThe hands-on interdisciplinary laboratory experience formed the core of the class. The first sixweeks involved tightly-defined labs in which students
Balancing Theory, Simulation and Physical Experiments in Heat Transfer EducationAbstract: Some big problems for students studying heat transfer are (1) difficulty in visualizingboth basic and complex theoretical concepts, (2) unsure how to design changes effect heat flowor temperature distributions, (3) unclear how to apply theoretical concepts in the development ofcomponents / systems and (4) confusion with how to extend single point experiments to genericapplications. It is impossible for students to solve complex heat transfer problems throughtheoretical hand calculations or execute real experiments when the boundary conditions arecomplicated because of time and laboratory equipment cost constraints. During the
AC 2011-1184: BASIC CLASS MATERIALS AND LABORATORY PROJECTSWITH DC MOTORS IN AN INTRODUCTORY UNDERGRADUATE ECECLASS FOR NON-MAJORSSergey N. Makarov, Worcester Polytechnic Institute Submitting author: Sergey N. Makarov earned his B.S./M.S./Ph.D./Dr. Sci. degrees at the State Uni- versity St. Petersburg (Leningrad), Russian Federation Faculty of Mathematics and Mechanics. Dr. Makarov joined Institute of Mathematics and Mechanics at State St. Petersburg University in 1986 as a researcher and then joined the Faculty of State St. Petersburg University where he became a full pro- fessor in 1996. In 2000 he joined the Faculty of Department of Electrical and Computer Engineering at Worcester Polytechnic Institute, MA. His
Society and is active in an NSF funded Biology Scholars program Page 22.404.2 c American Society for Engineering Education, 2011Cross-Disciplinary Biomedical Engineering Laboratories and Assessment of their Impact on Student Learning Page 22.404.3AbstractThree cross-disciplinary team-based laboratory courses were introduced into the biomedicalengineering curriculum at Milwaukee School of Engineering to enhance student understandingof the interdependence of the engineering topics and biomedical science. A major challenge forthe faculty was the assessment of
of adevice they designed or developed in order to prove a physical phenomenon in a research setting,etc. Hence, it comes as no surprise that ABET has embraced this criterion for close to a decade.Introduction to Thermodynamics requires that students learn basic, yet complicated concepts,such as determining properties of pure substances, calculating heat and work exchanged during aprocess, and the first and second law of thermodynamics, before they can tackle complexapplications, such as thermodynamic cycles or combustion systems. These basic concepts areconducive to simple, conceptually oriented laboratory assignments that parallel the classroominstruction. Those laboratory assignments are an ideal place to implement design of
. Lab material quantity is reasonable.During the end of term evaluation, 92.9% I can synthesize nanoparticles.students indicated that the course wastaught well. Some of the comments Figure 6 Mid-semester Students’ Evaluation of the Lab Component.regarding the lab component were: Instructor used lab activities as an effective way to stimulate thinking about subject matter outside of the scope of the lab itself. The laboratory exercises coincided with the lecture portion.ConclusionsA lab component was developed and delivered for an interdisciplinary class of engineeringstudents as part of an introduction to nanotechnology
course. Also two evaluation forms were developed before the course was offeredin 2010: 1) Formative Laboratory Experiment Evaluation Form and 2) Formative Evaluation ofJava Applets (Appendices 2 and 3). These were given to students during the course for formativefeedback. These instruments will be given every time the course is offered to validate them.Six weeks before the end of the semester, students were given two comprehensive problems(design projects) to assess their ability to apply quantum-mechanical laws to a specific problem.Thus, we could assess the conceptual understanding of the material and the ability of students tosolve the problem using the hands-on experience they acquired while carrying out laboratoryexperiments. We had four
Compressor Husky 1.5 gallon Air Scout Compressor $ 100III. Experimental RunsConstruction of the apparatus is complete, and experimental runs have been performed withwater and compressed air. Thus far, most runs have been done with water. The followingdiscussion outlines possible experimental runs to be done by students in the laboratory or in thelecture class:First, let's discuss the dimensional analysis for the fluid flowing through the specimen. It isdesired to determine how the pressure drop across the nozzle varies with the nozzle dimensionsand the flow rate. Following an example in the textbook by John and Haberman3 , we willassume that the pressure drop ΔP depends on the the flow area A1 at the entrance of thenozzle
AC 2011-1842: A LOW-COST LABORATORY EXPERIMENT TO GEN-ERATE THE I-V CHARACTERISTIC CURVES OF A SOLAR CELLErik A. Mayer, Pittsburg State University Erik Mayer received his Ph.D. in Engineering Science at the University of Toledo. His areas of focus are power electronics and embedded systems. He has a strong interest in renewable energy; he worked with the Electric Vehicle Institute and designed a course in renewable energy during his time at Bowling Green State University. In addition, he worked at Visteon designing components for hybrid vehicles. He became an Associate Professor at Pittsburg State University in 2010.Albert Leroy Powell, Bowling Green State University Albert Powell is a Sophomore Undergraduate
AC 2011-541: A METAL CASTING LABORATORY EXERCISE: COL-LABORATION BETWEEN THE ENGINEERING AND ART DEPARTMENTSAT TEXAS A&M UNIVERSITY - CORPUS CHRISTIP. A. Simionescu, Texas A&M University Corpus Christi Dr. Simionescu is an Assistant Professor in the Engineering Program of the Texas A&M University Corpus Christi. He received his B.Sc. from Polytechnic University of Bucharest in Romania in 1992, a doctoral degree from the same university in 1999 and a Ph.D. degree from Auburn University in 2004. His research interests include mechanical design, CAD and computer graphics. He has authored 18 journal papers and has been granted 7 patents.Mehrube Mehrubeoglu, Texas A&M University-Corpus Christi Dr
Society for Engineering Education, 2011 A Relevant, Automotive-Themed Experiment that Teaches Fundamental Flow Rate Concepts and Experimental UncertaintyAbstractIt is a common experience, in undergraduate laboratories, that the students perceive the simplebench-top experiments to be boring or irrelevant to real engineering and societal problems.Without relevance, many students feel disconnected from the lab experience, lose interest inwhat they are doing and do not think while they are in the lab. If students do not think about theactual measurement, the measurement errors and how the measurements relate to an engineeringmodel or to the information that they are trying to gain, then the lab experience has failed.Described in
Packard in San Jose, CA and in Colorado Springs, CO. Along with Dr. Bill Knowlton, Amy founded the Materials Science and Engineering Program at BSU and served as the first chair. Amy’s research interests include microelectronic packaging, particularly 3-D integration and ceramic MEMS devices. Amy especially enjoys teaching the Introduction to Engineering and Introduction to Materials Science and Engineering courses as well as engineering outreach activities.Anne Louise Seifert, Idaho National Laboratory Anne Seifert i-STEM Coordinator Anne Seifert is the Science, Technology, Engineering and Mathematics (STEM) Coordinator for the Idaho National Laboratory (INL) and serves as the INL’s Department of Energy Office
AC 2011-69: HANDS ON PROGRAMMABLE LOGIC CONTROLLER (PLC)LABORATORY FOR AN INDUSTRIAL CONTROLS COURSESteven F Barrett, University of Wyoming Steven F. Barrett, Ph.D., P.E. received the BS Electronic Engineering Technology from the University of Nebraska at Omaha in 1979, the M.E.E.E. from the University of Idaho at Moscow in 1986, and the Ph.D. from The University of Texas at Austin in 1993. He was formally an active duty faculty member at the United States Air Force Academy, Colorado and is now the Associate Dean of Academic Programs, Col- lege of Engineering & Applied Science, University of Wyoming. He is a member of ASEE, IEEE (senior) and Tau Beta Pi (chief faculty advisor). His research interests include
AC 2011-294: INTEGRATED LABORATORY CURRICULA AND COURSEPROJECTS ACROSS THE ELECTRONICS ENGINEERING TECHNOL-OGY PROGRAMWei Zhan, Texas A&M University Dr. Wei Zhan is an Assistant Professor of Electronics Engineering Technology at Texas A&M University. Dr. Zhan earned his D.Sc. in Systems Science from Washington University in 1991. From 1995 to 2006, he worked in the automotive industry as a system engineer. In 2006, he joined the Electronics Engineering Technology faculty at Texas A&M University. His research activities include control system theory and applications to industry, system engineering, robust design, modeling, simulation, quality control, and optimization.Ana Elisa P. Goulart, Texas A&M
AC 2011-1506: INTEGRATING LECTURE AND LABORATORY IN ANANALOG ELECTRONICS COURSE USING AN ELECTRONICS EXPLORERBOARDKenneth V Noren, University of Idaho, Moscow Kenneth V. Noren recieved the B.S., M.S. and Ph.D. degrees in electrical engineering from Michigan State University in East Lansing, Michigan, in 1987, 1989, and 1992, respectively. He is a Associate Professor in the Department of Electrical Engineering at the University of Idaho located in Moscow, Idaho. His research interests are in the area of design and modeling of analog and mixed-signal integrated circuits and in methods for engineering education
Engineering Technology department at Drexel University. Robin has been involved in various projects funded by Pfizer, NASA, NSF and Department of Education. His areas of research include Embedded Systems, Mechatronics, Efficient Solar Energy Systems, Internet-based Quality Control and 3-D Online Education. Page 22.920.1 c American Society for Engineering Education, 2011 Integration of E-Quality Laboratory Modules with Engineering Computer Numerical Control CourseAbstractThe paper presents an innovative approach for integration of multidisciplinary web-basedquality control
AC 2011-742: SIMULATION AND VISUALIZATION ENHANCED ENGI-NEERING EDUCATION DEVELOPMENT AND IMPLEMENTATION OFVIRTUAL EXPERIMENTS IN A LABORATORY COURSESushil K. Chaturvedi, Old Dominion University Dr Sushil Chaturvedi is a professor of Mechanical Engineering at Old Dominion University. His teaching and research interests are in the area of engineering eduaction and renewable energy conversion and conservation.Kaustubh A. Dharwadkar Page 22.1296.1 c American Society for Engineering Education, 2011 Simulation and Visualization Enhanced Engineering Education – Development and
Lecturer at the Uni- versity of Washington teaching the Chemical Engineering Laboratories (traditionally the Unit Operations lab). Her worked as a Lecturer included the development of new experimental modules for undergraduate ChemE students, the submission of proposals with an educational focus and the supervision of the labora- tories. During this time she also participated in outreach activities arranged by the College of Engineering to target increasing the number of students from underrepresented minorities in engineering programs. Today, Marvi serves as a Senior Research Scientist in the Bioengineering Department at the University of Washington and works as an independent consultant in engineering innovations.Dr
AC 2011-1778: UNIT OPERATIONS LAB BAZAAR: INCORPORATIONOF LABORATORY EXPERIENCES IN SIX INTEGRATED PILLAR COURSESMichael Jefferson Baird, University of Pittsburgh Dr. Baird joined the chemical engineering department at the University of Pittsburgh in the spring of 2008 as Instructor of Undergraduate Laboratory Courses. He also teaches a graduate course entitled ”Petroleum and Natural Gas Processing”. Before joining the University of Pittsburgh, Dr. Baird was an associate pro- fessor of chemistry at Wheeling Jesuit University for nine years following his retirement from the U.S. Department of Energy. While at DOE’s National Energy Technology Laboratory (NETL) in Pittsburgh, Dr. Baird managed projects involving the
, communication systems, and optoelectronic devices.Xiangyu Wei, Virginia Tech ECE Page 22.1669.1 c American Society for Engineering Education, 2011 Visualizing Concepts in Electromagnetic Fields: Hands-On Experiments Using Student-Owned Laboratory KitsThe concepts of Electromagnetic (EM) fields serve as the foundation for many key principles ofelectrical engineering. Given its significance, EM fields has been a core subject taught toElectrical Engineering (EE) undergraduate students, both in the U.S. and abroad. Yet, interest inthe required junior level EM courses and the subsequent
AC 2011-2468: WIRELESS COMMUNICATION SYSTEMS: A NEW COURSEON THE WIRELESS PHYSICAL LAYER WITH LABORATORY COM-PONENTBruce E. Dunne, Grand Valley State University Bruce E. Dunne received the B.S.E.E. (with honors) and M.S. degrees from the University of Illinois at Urbana-Champaign in 1985 and 1988, respectively, both in Electrical and Computer Engineering. He received the Ph.D. degree in Electrical Engineering from the Illinois Institute of Technology, Chicago, in 2003. In the Fall of 2003, he joined the Padnos College of Engineering and Computing, Grand Valley State University, Grand Rapids, MI, where he is currently an Associate Professor of Engineering. Prior to this appointment, he held several research and
AC 2011-1392: TEMPERATURE ALARM LABORATORY DESIGN PROJECTFOR A CIRCUIT ANALYSIS COURSE IN A GENERAL ENGINEERINGCURRICULUMLoren Limberis, East Carolina University Dr. Limberis joined the Engineering faculty at ECU in August 2006. He earned his B.S. in electrical engineering and Ph.D. in bioengineering from the University of Utah. Dr. Limberis taught for several years as an Assistant Professor at The College of New Jersey and was a research analyst with Southwest Research Institute prior to his academic career. His research interests focus on designing techniques to utilize nature’s highly complex and sophisticated biological systems to develop biohybrid devices for use in biotechnology applications.Jason Yao, East
AC 2011-2361: EFFECTIVELY UTILIZING LOCAL AND REMOTE THERMO-FLUIDS LABORATORY EXPERIMENTS TO ENHANCE STUDENT LEARN-ING.Ms. Meghan Marie RockMr. Harry Marx, Rochester Institute of Technology Harry Marx graduated from the Rochester Institute of Technology in March 2011 with a B.S. in Mechan- ical Engineering Technology. He is currently an employee of Micron Technology.Mr. Seth M Kane, Rochester Institute of Technology 5th year Mechanical Engineering Technology Major. Actively pursuing Bachelors degree. Worked at Johnson and Johnson as a Project Management Co op. Also worked at Fisher-Price as a Product Devel- opment Intern.Robert Garrick, Rochester Institute of Technology (COE) Rochester Institute of Technology
AC 2011-1459: ENHANCEMENT OF STUDENT LEARNING IN EXPERI-MENTAL DESIGN USING VIRTUAL LABORATORIES - YEAR 3Milo Koretsky, Oregon State University Milo Koretsky is an Associate Professor of Chemical Engineering at Oregon State University. He cur- rently has research activity in areas related to thin film materials processing and engineering education. He is interested in integrating technology into effective educational practices and in promoting the use of higher level cognitive skills in engineering problem solving. Dr. Koretsky is a six-time Intel Faculty Fellow and has won awards for his work in engineering education at the university and national levels.Christine Kelly, Oregon State University