engineers going into the field, since itis expected that demand for engineering expertise won’t be met with current graduation rates.3In response, several K-12 programs have been developed to increase exposure to engineering,normally in a formal setting.5,6 While well-intentioned, the faltering graduation rates ofengineers from suggest these programs are falling short of bolstering the country’s supply offuture engineers, and further action must be taken to maintain a global engineering presence.3Rather than aim at the preparation and retention of older students, the solution may lie with ayounger crowd (ages 3-6), since development during formative years has implications towardsdevelopment of misconceptions and future career choices.7 In
participating (such We conducted Single Factor ANOVA tests or t-tests, as appropriate, on several variables to look for differences in as joining in class discussions and completing total scores between groups, with a significance level of 0.05. hands-on activities). Variable p-value2. I discuss with my class how this course fits into their educational and career goals. Sex 0.196 Future
and within its case containing variations depending on the subject areaand standard.Methods of Collection Science, math, technology, vocational, engineering, and career standards were collectedfrom each state. Research team members pulled standards that relate to engineering andtechnology design from each standards document using a liberal approach. The liberal approachmeant that terminology which was in congruence with the definitions of engineering had to beutilized, yet the standards text did not have to explicitly mention engineering. These key terms:Engineering, Design, Process, Optimization, Modeling, Testing, Properties (of Materials),Prototype, Design Task, Iterative, Technology, Constraints, and Criteria were based on
our nation’sfuture but also our national security and societal progress (National Academy of Engineering,2009). EiE has proven to be an effective tool for developing this literacy and for instilling inelementary aged children the skills to work in teams, solve problems and make data drivendecisions, all important 21st century skills (LaChapelle and Cunningham, 2010). In addition,the program is designed for all students—an important factor in both career preparation andworkforce development. The paper will discuss how EiE use has been increased, encouragedand supported by the author and our university by providing professional development andongoing support to teachers and schools. To accommodate the addition of engineering principlesto the
AC 2011-2151: DIFFERENCES BETWEEN STUDENT AND FACULTY EX-PECTATIONS FOR A ROBOTICS CAPSTONE DESIGN PROJECTKevin M Sevilla, Virginia Tech Kevin Sevilla is a Ph.D student at Virginia Tech in the Department of Engineering Education.Maura J. Borrego, Virginia Tech Maura Borrego is an Associate Professor in the Department of Engineering Education at Virginia Tech. She is currently serving a AAAS Science and Technology Policy Fellowship at the National Science Foundation. Her research interests focus on interdisciplinary faculty members and graduate students in engineering and science, with engineering education as a specific case. Dr. Borrego holds U.S. NSF CAREER and Presidential Early Career Award for Scientists and
Outreach Coordinator for Cal Poly’s College of Engineering in 2008-2009, Teana helped develop the EPIC - Engineering Possibilities in College - summer camp for high school students. Now in its 5th year, the EPIC program continues to draw underrepresented students to its program, which educates and inspires students to pursue careers in engineering. Page 22.658.1 c American Society for Engineering Education, 2011 Evolving a Summer Engineering Camp through AssessmentBackgroundEPIC (Engineering Possibilities in College) is a one-week summer program for high schoolstudents (entering 9th-12th
Lafayette Dr. Demetra Evangelou is Assistant Professor of Engineering Education in the School of Engineering Education at Purdue University. She has a PhD in Early Childhood Education from the University of Illinois at Urbana-Champaign and international expertise in early childhood policy and research methods. Her current research focuses on developmental engineering, early education antecedents of engineering thinking, developmental factors in engineering pedagogy, technological literacy and human-artifact inter- actions. She is a member of Sigma Xi Science Honor Society and in 2009 he was awarded the prestigious NSF CAREER Award.Jennifer Dobbs-Oates, Purdue University Jennifer Dobbs-Oates, Ph.D., is assistant
Tech) in 1988 and 1990, respectively. She received her Ph.D. in EE from the Uni- versity of Minnesota in 1995. She is currently working as Paslay Professor of Electrical and Computer Engineering at Kansas State University. She has served as a faculty member at Mississippi State Univer- sity and Michigan Tech in the past. Her research interests are in computer applications in power system operation including artificial intelligence techniques. She has been active in the IEEE Power and Energy Society, currently serving as President-Elect. She has served as IEEE/PES Secretary and Treasurer as well. She is recipient of the IEEE/PES Walter Fee Outstanding Young Power Engineer Award and NSF CAREER award. Dr. Schulz is a
the summer research program questionnaire The opportunity for close interaction with the faculty members was: The opportunity to learn more about other faculty and student projects in addition to my own was: The opportunity to learn more about how to plan for graduate school and careers in electrical engineering, computer engineering was: The opportunity to learn more about general research processes & methods was: The opportunity to learn more about the Cognitive Communications related skills and techniques was: The opportunity to become familiar with the relevant scientific literature for my research project was: The opportunity to learn more about the
AC 2011-2141: GOLDSHIRT TRANSITIONAL PROGRAM: FIRST-YEARRESULTS AND LESSONS LEARNED ON CREATING ENGINEERINGCAPACITY AND EXPANDING DIVERSITYTanya D Ennis, University of Colorado Boulder TANYA D. ENNIS is the current Engineering GoldShirt Program Director at the University of Colorado Boulder’s College of Engineering and Applied Science. She received her M.S. in Computer Engineering from the University of Southern California in Los Angeles and her B.S. in Electrical Engineering from Southern University in Baton Rouge, Louisiana. Her career in the telecommunications industry included positions in software and systems engineering and technical project management. Tanya most recently taught mathematics at the Denver
connectengineering education organizations in different parts of the world is also made available.A 2010 two week course to the Netherlands and the United Kingdom presents a case study thatshowcases the introduction to concepts present in differing academic and professional cultures.The theme of “Learning to Live with Floods” provided students experience to cutting-edge floodmanagement and modeling techniques. This exposure enhanced students’ academic goals in afashion that would be impossible during the course of typical engineering curricula. The widevariety of lectures, presentations, and field trips are provided in a context that serves to acclimatestudents to a career that is increasingly likely to be multicultural and global. Surveys that
electrical and computer engineering department heads wasconducted in 2009 to solicit responses regarding what constitutes sufficient assessment forprogram educational objectives. The results of this survey indicate that the current views of whatconstitutes sufficiency by ABET are misguided, resulting in the collection of statistically invaliddata, faulty assumptions regarding the causality of a program’s objectives to the career successesof their alumni, and unwarranted citations for shortcomings beyond the control of both programand institution. This paper presents a detailed analysis of the survey responses and providesrecommendations to ABET for changes to the accreditation process.IntroductionIn the “Criteria for Accrediting Engineering Programs
, anddemonstrated deeper understanding of subject matter. They found that service-learning is moreeffective over four years and that the messiness inherent in helping solve real community-basedproblems enhances the positive effects (Eyler & Giles, 1999).Astin et al. found with longitudinal data of 22,000 students that service-learning had significantpositive effects on 11 outcome measures: academic performance (GPA, writing skills, criticalthinking skills), values (commitment to activism and to promoting racial understanding), self-efficacy, leadership (leadership activities, self-rated leadership ability, interpersonal skills),choice of a service career, and plans to participate in service after college. In all measures exceptself-efficacy
AC 2011-528: BEST PRACTICES FOR STUDENT ROBOTIC CAMPSMarilyn Barger, Hillsborough Community College Dr. Marilyn Barger is the Principal Investigator and Executive Director of FLATE, the Florida Regional Center of Advanced Technological Education, funded by the National Science Foundation and housed at Hillsborough Community College in Tampa, Florida since 2004. FLATE serves the state of Florida as its region and is involved in outreach and recruitment of students into technical career pathway; curriculum development and reform; and professional development for technical teachers and faculty. She earned a B.A. in Chemistry at Agnes Scott College and both a B.S. in Engineering Science and a Ph.D. in Civil
in Technology1.0 - AbstractWhat is the long-term experience of Master’s degree graduates after completing an acceleratedweekend masters degree program (WMP)? This paper shares the results of a longitudinal follow-up study of nearly 300 professionals, most from business and industry, who graduated fromPurdue University’s Center for Professional Studies in Technology and Applied Research(ProSTAR) programs. This cohort-based set of programs employs a hybrid classroom anddistance-supported, innovatively-delivered graduate degree (MS) in technology. An onlinesurvey collected the data and cross-tabulation and frequency analysis identified the findings.Consequences; with respect to career experiences, advancement and salary; are reported
AC 2011-908: STEM INTEGRATION IN A PRE-COLLEGE COURSE INDIGITAL ELECTRONICS: ANALYSIS OF THE ENACTED CURRICU-LUMAmy C. Prevost, University of Wisconsin-Madison Ms. Prevost is a doctoral student in Education Leadership and Policy Analysis at the University of Wisconsin-Madison. Her research is focused on the STEM career pipeline, especially related to engi- neering, engineering education and the molecular biosciences. In addition to her work in education re- search, she is also the Director of scientific courses at the BioPharmaceutical Technology Center Institute in Madison, WI, where she coordinates curricula in the area of molecular biology.Mitchell Nathan, University of Wisconsin, Madison Mitchell J. Nathan, BSEE
academy where there are successful practices for helping students develop anidentity, more specifically a military identity, to settings where such intentional practices do not Page 22.69.2exist. While a military identity is not the same as an engineering identity, it is a professionalidentity and is related to future career work. The military academy in this study is located in thenortheastern United States. The primary comparative university setting is a private university inthe mid-western United States where students have a strong identification with their university’sreputation. A secondary comparative setting included a public university in
financial support from the program due to low GPA or major change. During thetwo years of Phase 2, 13 scholars participated with seven chosen as second semester freshmenand six chosen as second semester sophomores.The one-on-one mentoring element of the program was directed by the ExxonMobil liaison whoselected ExxonMobil engineers and matched them with an LSU ExxonMobil scholar.Additionally, the liaison coordinated workshops with the mentors and protégés, and these eventswere utilized to communicate expectations, roles and responsibilities of each person. Thementors helped the scholars with professional development and career planning. Feedback forthis part of the program was obtained through discussions during Phase 1, and a formal survey
2005, the USF President’s Award for Faculty Excellence in 2003, IBM Faculty Partnership Awards in 2000/2001, a National Science Foundation CAREER Award in 1999 and the IEEE MTT Society Microwave Prize in 1996. His current research interests are in the areas of RF micro electromechanical systems, development and application of microwave materials, and integrated circuit design. He has thirteen U.S. patents and over 150 professional journal and conference publications.Jeff Frolik, University of VermontPaul G. Flikkema, Northern Arizona University Paul G. Flikkema received the PhD in Electrical Engineering from the University of Maryland, College Park. From 1993-1998 he was an Assistant Professor at the University of
AC 2011-1724: TRANSITIONING AMERICA’S VETERANS INTO SCI-ENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS (STEM)ACADEMIC PROGRAMSSarah A Rajala, Mississippi State University Sarah A. Rajala is currently professor and dean of engineering at Mississippi State University. Previously, she served as department head of electrical and computer engineering at Mississippi State University, professor, associate dean for research and graduate programs, and associate dean for academic affairs in the College of Engineering at North Carolina State University. From 1987-1998, she held a visiting ap- pointment in the School of Electrical Engineering at Purdue University. During her career she conducted research on the analysis and
the University of Texas at Austin, in 1998. She served as an Assistant Professor at the University of Alabama from 1998 to 2002, when she moved to Arizona State University. In 2008 she was promoted by ASU to Associate Professor. Dr. Husman has been a guest editor of Educational Psychology Review, has served on editorial board for top educational research journals, and currently sits on the editorial board of Learning and Instruction. In 2006 she was awarded the U.S. National Science Foundation CAREER grant award and received the Presidential Early Career Award for Scientists and Engineers. She has conducted and advised on educational research projects and grants in both the public and private sectors, and served as
, too few people are choosing engineering careers, and many engineering facultiesare attempting to address this problem by reaching out to schools. This paper describes how ahome-grown, web-based software tool, already used successfully in university-levelengineering and physics courses, is being modified for high-school use. The softwarepackage, OASIS, comprises a large question database and server-side program that deliversindividualized tasks, marks student responses, supplies prompt feedback, and logs studentactivity. OASIS can be used for both skills practice and formal assessment. Because the Webserver carries out all processing, students need only a computer with internet access and astandard browser, making OASIS well suited to student
and self-examination. The three basic components1 of EL are illustrated in Figure 1. The “partner” in this figurerefers to the community partner. In order for EL projects to be effective in achieving specificgoals they must be based on sound instructional methods and design of the respective curriculumto satisfy the accreditation criteria for that educational program. Students who complete ELprojects exhibit personal growth through increased self-esteem and confidence, personalresponsibility, and sense of personal efficacy. They also acquire active exploration of careerinterests, understanding of the work environment, specific job skills, hiring advantage overothers greater confidence in career choice, increased interpersonal skills
program, the Green DesignApprenticeship, including the overarching goals and learning objectives. The main focus of thepaper is on the method and results of a far-post assessment survey completed 2-3 years afterstudents participate in the program. The results indicate that the program content is having animpact on students’ daily activities, and is helping students make decisions about fields of study.We also provide some strategies for initiating far-post assessment in outreach programs.The Green Design ApprenticeshipThe Green Design Apprenticeship, offered since 2004 by the Green Design Institute at CarnegieMellon University, is an outreach program for gifted and talented high school students interestedin learning about academic and career
).” Page 22.259.3 7. “A research project, which enhances one's knowledge of a particular field, and how it relates to my expectations/perceptions.” 8. “It's like a research paper, except it attracts students' interests, and makes them want to pay more attention to the topic.” 9. “Learning that is embedded in mind even after a certain subject is over.” C. Somewhat Understand 1. “A project that has some effect on your life, whether it be understanding material better or something for your career” 2. “Learning something that will help you later in life not just learning something and using it for the test.” 3. “Life Long Learning is
talent is important for the future vitalityof scientific research. This development is essential because demographic trends show that in thenext 20 years minorities will constitute an increasing portion of the US population, especially inthe pool of potential college students. Despite the growing number of STEM careers in theAmerican economy, education statistics suggest that far too few Hispanic students are beingencouraged and enabled to take advantage of opportunities in technical disciplines. According tonational statistics, Hispanics are not only the largest minority in the United States but also one ofthe fastest growing.This paper describes the Catalyzing and Supporting Minority Talent Development modeldeveloped to attract and retain
in both the public (as an educator) and pri- vate sectors before returning to postgraduate study and embarking on an academic career. As with many South Africans, growing up under Apartheid has had a profound impact on my worldview and life choices. This has included influencing the choice of a career in education, both as a practitioner and scholar. I cur- rently convene a postgraduate programme in Engineering Management and teach undergraduate courses in Engineering Management. I draw on multiple theoretical constructs for the design of learning contexts, including complexity and systems theory. My research is primarily focussed on student experience of learning events and student learning more broadly both in
skillsnecessary to embark on successful careers and to contribute to the advancement of the currentstate of bioengineering. To this end, at our institution we have conducted an extensiveexamination of our undergraduate bioengineering program. The goal of this study was to utilizea variety of assessment techniques in order to enhance our understanding of the strengths andlimitations of our curriculum and to identify any aspects of the curriculum which could beoptimized to better meet the needs of the modern bioengineering undergraduate student.In this paper, we present our comprehensive approach to assessing the effectiveness of thecurrent curriculum at the University of Washington. We describe the multiple methods of self-analysis implemented over the
UniversityRadian G Belu, Drexel University (Eng Tech.) Dr. Radian Belu is Assistant Professor within the Engineering Technology (ET) program - Drexel Univer- sity, Philadelphia, USA. Before joining to the Drexel University Dr. Belu hold faculty and research posi- tions at universities and research institutes in Romania, Canada and United States. His research interests included power system stability, control and protection, renewable energy system analysis, assessment and design, power electronics and electric machines for wind energy conversion, radar and remote sens- ing, wave and turbulence simulation, measurement and modeling, numerical modeling, electromagnetic compatibility and engineering education. During his career, Dr
reviewed by the committee: Table 1: Stated Curricular Objectives of Prevalent Engineering Curricula Enhance the study of science or mathematics or both Develop problem-solving skills through interdisciplinary learning experiences Connect science and mathematics to real-world problems and demonstrate their application in technical careers Teach technological literacy Develop design, creativity, iterative design, and critical thinking skills Increase awareness of the engineering disciplines and careers from an early age Provide rigorous curricula to prepare students to pursue engineering or engineering technology programs in college