under AC machines while the DC portion covers separately excited, shunt, series, andcompound DC machines. Effective teaching of this course requires the development of appropriatelaboratory experiments to show students how to practically implement the theories covered in theclassroom.There were no standard laboratory experiments for the course prior to 2010 when the first authorjoined the Department. Based on industry and prior teaching experience, he developed, eight laboratoryexperiments for the course. The labs together with the class notes developed for the course were sent tosenior faculty from within and outside IPFW for review. The feedbacks was very positive and encouraging.This paper highlights the laboratory experiments developed for
Paper ID #11584Understanding additive manufacturing part performance through modelingand laboratory experimentsMiss Ying Zhang, Texas A&M University Ying Zhang is a fourth year PhD student in Mechanical Engineering department at Texas A&M University, working under the supervision of Dr. Jhywen Wang. Currently, she is a graduate teaching assistant for Strength of Material lab in Engineering Technology Industrial Distribution department. She has been a TA for this class since spring 2013. Her doctoral research is focused on fabrication, Finite Element simulation, and mechanical modeling of layer-by-layer
Paper ID #12911An Integrated Course in Programming for Laboratory and Process ControlDr. Warren A. Rosen, Drexel University (Eng. & Eng. Tech.) Dr. Warren Rosen received his Ph.D. in physics from Temple University. He has served as Assistant Professor of Physics at Colby and Vassar Colleges where he carried out research in solar physics, medical physics, and instrumentation. Following this experience he was a research scientist at the Naval Air Warfare Center in Warminster, PA where he established a laboratory for research in high-performance computer networks and architectures for mission avionics and signal
equipment, laboratory would allow to teach skills which are relevant to the current needsof industry. Based on conducting research and feedback collected from the industryrepresentatives it was decided to utilize Allen Bradley Control Logic 5000 PLC which is widelyrepresented within the industrial sector. The selection of the vendor producing trainingequipment fell on Amatrol Inc31, the company which specializes in designing and manufacturingup-to-date and relevant for the industry needs training equipment. The industrial relevance ofmanufactured by Amatrol Inc. Training equipment comes from the companies approach duringthe design and development stage of a particular piece of equipment. Amatrol, Inc. continiousysurvey industry firms on their needs
Paper ID #11627Effectiveness of Traditional, Blended and On-Line Teaching of Electrical Ma-chinery CourseProf. Aleksandr Sergeyev, Michigan Technological University Aleksandr Sergeyev is currently an Associate Professor in the Electrical Engineering Technology program in the School of Technology at Michigan Technological University. Dr. Aleksandr Sergeyev earned his bachelor degree in Electrical Engineering at Moscow University of Electronics and Automation in 1995. He obtained the Master degree in Physics from Michigan Technological University in 2004 and the PhD degree in Electrical Engineering from Michigan
. Page 26.53.1 c American Society for Engineering Education, 2015 A Hands-on Project approach to Teaching Solid ModelingAbstractThis paper describes an integrated laboratory-oriented course MET/MFG407 in computer-aidedDesign at Oregon Institute of Technology. Teaching this subject in an 11-week of academicquarter is a challenging task requiring a combination of instructional delivery methods.Besides the in class lectures on the different aspects of using the CAD software; each student isalso given a toy robot kit to be modeled. The course content is designed around three learningobjectives: be able to create parametric models, be able to generate the associated 2D multiviewdrawings of the solid models, be
teaching Page 26.1000.1 CAD based courses, Thermodynamics and Fluid Mechanics. He is involved with the Thermodynamic and Fluids laboratories and is interested in incorporating renewable energy systems into the lab environment.Prof. Moustafa R. Moustafa, Old Dominion University c American Society for Engineering Education, 2015 Paper ID #11530 Professor Moustafa joined the Mechanical Engineering Technology department in August of 1979. Since then, he continuously taught, advised, guided
each of the projects will be provided at this timeas data was still being processed at the time of this writing. The three entries are: Explore and develop tools for visual support of learning and training: “Google Glass” Flipped Classroom and Interactive Engagement for Improved Student Learning in Mathematics Flipped Classroom for Statics and Particle Dynamics courseThe objective of first entry was to investigate the use of Google class for preparing multimediacontent through first-person view that could be utilized for teaching, learning, training, andevaluation of laboratory activities. The pilot required the development of the visual support toolsfor “Google Glass” using Android SDKs.The second entry focused on the
Paper ID #13344Learning from the World Trade Center Collapse – Use of a Failure CaseStudy in a Structures and Materials Laboratory CourseDr. Tara Cavalline P.E., University of North Carolina, Charlotte Assistant Professor of Civil Engineering Technology at UNC CharlotteDr. Norb Delatte P.E., Cleveland State University Dr. Norbert J. Delatte, Jr., P.E., is Professor and Chair of the Department of Civil and Environmental Engineering at Cleveland State University. He is the author of Beyond Failure: Forensic Case Studies for Civil Engineers (ASCE Press, 2009). In addition, he is the Editor of ASCE’s Journal of Professional
Paper ID #13152Effectiveness of Simulation versus Hands-on Labs: A Case Study for Teach-ing an Electronics CourseDr. MOHAMMED TAQIUDDIN TAHER, DeVry University, Addison Dr. Mohammed T. Taher is a senior professor of Network and Communication Management in the College of Engineering and Information Science at DeVry University, Addison, Illinois. Professor Taher’s area of specialization is Computer Networks. Dr. Taher received his M.S in Computer Science with major in Networking from Northeastern University, Chicago and his Doctorate in Instructional Technology from Northern Illinois University. Dr. Taher has more than 30
. Learnersexpressed various active teaching methods such as on-line reading materials, posted lectures,video demonstrations, hands-on laboratories, and various communications means (relay chats,forum discussions) help them engaged the workshop more. As some of the feedbacks shownbelow:Overall, fantastic! I enjoyed it. The readings helped. We could do more programming if therewere more time. I never learned so much in just 3 days. Please send my thanks to all of thepresenters and helpers who made it work so well.I enjoyed the class. Instructors were well prepared. I want to try conducting an on-line labmyself in the future.I wish there were more workshops like this available. I learned a lot without needing to travel.It was not just a bunch of fluff and waste
monitor normal operations,detect and analyze abnormal conditions, and ensure safe operation in nuclear facilities. EMTprogram has acquired new radiation detection equipment for teaching laboratory. The laboratoryactivities introduce students to various types of detectors used to measure radiations and thegeneral properties of radiation detection systems. The hands-on equipment operation training canfurther enhance the students’ educational experience. This laboratory module can be infused innew course (Introduction to Nuclear Technology) and other existing courses.4.3.5 Virtual Reality Teaching ProgramThe greatest challenge facing emergency response personnel is the ability to train effectively.Recent information technologies make it possible to
unique aspects of the course is the teaching format. In 2013, the College began aninitiative to double its enrollment over a period of about ten years. As part of this initiative,departments have been asked to find novel teaching approaches that allow for increased capacitywithout sacrificing quality of instruction. From this standpoint, a hands-on laboratory is one ofthe primary distinguishing components of engineering technology education and is also one ofthe major limiting factors to throughput. This course was the perfect opportunity to investigatemethods for offering a laboratory component without the requirement for a multiple, two to threehour, facility intensive laboratory sections. To this end, the course was designed to have
@mtu.eduAbstractThe traditional way engineering and engineering technology courses are taught is based ontraditional lecture and laboratory experiments, which are still the most frequent teaching methodsused nowadays around the world. On the other hand, active learning methodologies grounded inscientific research in education have been attracting considerable attention over the past yearswith numerous research studies indicating the efficacy of such learning styles.In this article, the author addresses the main challenges and shares active learning strategies usedto encourage active learning and engagement among students in face-to-face ElectricalEngineering Technology (EET) courses. The implementation of active learning, cooperativelearning and problem
process, but payoff may be significant in terms of market dominance. Inthis paper, design of a manually powered hydraulic bicycle using energy efficiency as a primarydesign objective is presented. A laboratory setup is developed to test performance of the hydraulicsystem components. Experimental analysis of component behavior of a functional prototype of thehydraulic system is performed. The analysis result is used to select components for optimumperformance of the system in its desired operational conditions. The methodology can be utilizedin design of similar systems where energy efficiency is a primary design objective.1. IntroductionWorldwide, the vast majority of energy is produced from fossil-based fuels resulting in theincrease of carbon
Paper ID #11886An Interactive Dynamics Learning CourseDr. Sunil Mehendale, Michigan Technological UniversityDr. John L. Irwin, Michigan Technological University As Associate Professor for Mechanical Engineering Technology since 2006 at Michigan Technological University, Dr. Irwin teaches courses in Product Design & Development, FEA and CAE Applications, Parametric Modeling, and Computer Aided Manufacturing. Research interests include STEM education, where as PI for Improving Teacher Quality grants (2010 & 2013) he has developed and implemented professional development courses for K-12 science teachers to implement
DSP techniques. For instance, the “SIRI”function in iphone 4 uses DSP-based speech recognition algorithms. High quality headphonesemploys DSP-based noise cancelation techniques as well.DSP has become an integral part of Electronic Engineering Technology (EET) and ElectricalEngineering curricula at higher institutions worldwide. To fulfill a successful DSP curriculum, itis critical to complement lectures with well-designed hands-on laboratory exercises. It has beenwidely acknowledged that hands-on experiences improve teaching and learning efficiency andreinforce students’ comprehension of abstract topics1,2,3,4. Page 26.1307.2Motivations and
papers were also published on similar aspects of this subject.When researching for planning methods that target the goals presented in this paper, there wasnot a large amount of currently available information that directly applies. Searching the Internetfor “balancing teaching workload across multiple classes,” a variety of sources will surface thatuse a much different interpretation. In “Balancing Faculty Workload” (American MathematicalSociety 1, 2012), the areas covering teaching, research, and service are the key elements ofconcern when it comes to the topic of teaching workload. Indeed, even in our own Engineeringand Design Department, teaching workload planning is directly tied to promotion and tenure andis focused on those three main
the main teaching platform. However, when presented with options,students never use this platform for class projects or capstone projects. Surveys showed that thiswas due to the fact that the laboratory experiments were topic specific and did not present asystem design approach which made it difficult for students who attempted to use thismicrocontroller [1]. A new platform, the C-Stamp microcontroller, was introduced as analternative for their design. This development boards provide a pre-assembled hardware platform,which include common peripheries in addition to programming libraries. These benefitsencouraged some students to implement the C-Stamp microcontroller in their senior designprojects with fairly successful outcomes [1]. The
Paper ID #12669Influence of Integrating GPS and Civil 3D in Engineering Technology CoursesDr. Maher M Murad, University of Pittsburgh, Johnstown Dr. Maher Murad is a faculty member in the Civil Engineering Technology department at the University of Pittsburgh at Johnstown. Dr. Murad served as a visiting professor at Bucknell University. He also has overseas teaching and professional experience. He worked as a technical manager at Modern Contracting and as a highway project manager at Acer Freeman Fox International. He is a licensed professional engineer (P.E.) in the state of Ohio. Dr. Murad received a Masters degree in
Paper ID #12337A flipped course in modern energy systems: preparation, delivery, and post-mortemDr. Matthew Turner, Purdue University (Statewide Technology) Dr. Matthew Turner is an Assistant Professor of ECET at Purdue University New Albany where he teaches courses in power systems and controls. Prior to joining the faculty at Purdue, Professor Turner worked as a researcher at the Conn Center for Renewable Energy Research in the area of power and energy systems, with a focus on smart grid implementation and computer modeling. Dr. Turner’s current research concentrates on demand response technologies and the application of
its steering committee for several years. He has invested over twenty-five years in the development and maintenance of a multimillion dollar manufacturing laboratory facility complete with a full scale, fully integrated manufacturing sys- tem. Professor Harriger has been a Co-PI on two NSF funded grants focused on aerospace manufacturing education and is currently a Co-PI on the NSF funded TECHFIT project, a middle school afterschool pro- gram that teaches students how to use programmable controllers and other technologies to design exercise games. Additionally, he co-organizes multiple regional automation competitions for an international con- trols company
Paper ID #12042Two Phase Flow Water Gas Separation in Biomass Energy ProductionProf. Yeong Ryu, State University of New York, Farmingdale YEONG S. RYU graduated from Columbia University with a Ph.D. and Master of Philosophy in Mechan- ical Engineering in 1994. He has served as an associate professor of Mechanical Engineering Technology at Farmingdale State College (SUNY) since 2006. In addition, he has conducted various research projects at Xerox Corporation (1994-1995), Hyundai Motor Corporation (1995-1997), and New Jersey Institute of Technology (2001-2003). He has been teaching and conducting research in a broad range
, will be a significant step in enhancing the instructional strategies anddesign in the field of instructional technology. Following are the research questions: 1. Do pure discovery-based (no feedback) simulated labs improve students’ declarative knowledge?” The premise of this research is that the simulated experiments are better than the hands-on laboratory exercise when it comes to understanding basic IT concepts. Therefore, the hypothesis is: The use of simulated experiments in the teaching of IT Page 26.581.7 concepts in CCNA program with no feedback (pure discovery learning environment) will produce improved
University. Prior to joining ODU’s Engineering Technology Depart- ment, Dr. Jovanovic taught at Trine University, Angola, Indiana in the Design Engineering Technology Department, and as a Lead Faculty of International Studies program for the Master of Leadership degree in the School of Professional Studies. Before Trine, she worked as a Graduate Research Assistant at Purdue University in the Mechanical Engineering Technology and Computer Graphics Technology de- partments. She also served as an instructor in the STEM Academic Boot Camp Diversity Program.She is teaching classes in the area of mechatronics and computer aided engineering. Her research Interests are: mechatronics, robotics, digital manufacturing, product
demonstrated by factors such aseducation, professional credentials and certifications, professional experience, ongoingprofessional development, contributions to the discipline, teaching effectiveness, andcommunication skills. Collectively, the faculty must have the breadth and depth to cover allcurricular areas of the program.Perhaps one of the most challenging tasks for smaller institutions such as Northern New MexicoCollege is to have the faculty with the breadth and depth to cover all areas. The IET facultyconsists of 3.5 FTE tenured/tenure track faculty, who are able to teach three or four courses persemester each (courses only have one section). It is essential, then, to exploit the strength of eachfaculty and provide professional development
Paper ID #11284An Introductory Study of the Impact of Implementation Intentions on As-signment Completion Rates with an Emphasis on Engineering TechnologyStudentsDr. Christina R Scherrer, Southern Polytechnic State University Christina Scherrer is an associate professor of Systems and Industrial Engineering in the Southern Poly- technic College of Engineering at Kennesaw State University. Her research interests are in the application of operations research and economic decision analysis to the public sector and in assessing education innovation. She teaches primarily statistics and logistics courses, at both the undergraduate
Paper ID #11262Summer Industrial Projects Program (SiPP) Drives Engineering TechnologyStudent RetentionProf. Robert J Durkin, Indiana University Purdue University, Indianapolis Mr. Durkin teaches courses in Mechanical and Electrical Engineering Technology; including the capstone design and independent study projects. He serves as a Faculty Senator and earned the 2013 Outstanding Teacher Award. He has over 25 years of engineering and manufacturing experience including; design, project management, and various engineering, research and manufacturing leadership roles. He has been awarded two US patents. He is an alumnus of