Administration from Harvard University. One of his major research interests has been the impact of gender on science careers. This research has resulted in two books (both authored with the assistance of Gerald Holton): Who Succeeds in Science? The Gender Dimension and Gender Differences in Science Careers: The Project Access Study.Dr. Philip Michael Sadler, Harvard Smithsonian Center for Astrophysics Philip Sadler holds a B.S. in Physics from MIT and an Ed.D. from Harvard. He co-authored the first integrated computer and laboratory introductory calculus course in 1975. He has taught middle school mathematics, engineering, and science and both undergraduate science and graduate teaching courses at Harvard. His research
need for, and an ability to engage in life- 93.0% 2.9 long learning (j) a knowledge of contemporary issues 50.7% 3.9 (k) an ability to use the techniques, skills, and modern 93.0% 9.1 engineering tools necessary for engineering practiceConclusionThe skills gap both in the technical (“hard”) and professional (“soft”) skills is a reality of themodern science and engineering workforce, but collaboration of employers (industry orgovernmental agencies) with universities can lead to successful partnerships to design anddevelop curriculum that
over the course offive semesters. The research is designed to test two hypotheses: 1. A long-term design project that integrates knowledge from multiple courses strengthens student knowledge retention. 2. A large-scale design project requiring tools from many courses improves student problem-solving and design skills.By integrating five semesters of the mechanical engineering curriculum into a cohesive whole,this project has the potential to transform the way undergraduate education is delivered. Beforeand after testing is being conducted to assess: a) Change in retention between courses and b)Change in student problem-solving and design skills.The centerpiece of the hybrid powertrain is the planetary gearset, which combines
, NIDRR, VA, DOD, DOE, and industries including Ford and GM. Currently, Dr. Kim is the site director for the NSF Industry and University Cooperative Research Center (I/UCRC) for e-Design. Dr. Kim is an editorial board member of Journal of Integrated Design and Process Science. Dr. Kim received top cited article award (2005-2010) from Journal CAD and 2003 IIE Transactions Best Paper Award. Dr. Kim was a visiting professor at Kyung Hee University, South Korea from September 2013 to June 2014. Dr. Kim’s education includes a Ph.D. in Industrial Engineering from University of Pittsburgh.Carolyn E Psenka PhD, Wayne State University Carolyn Psenka, PhD is a cultural anthropologist with research interests focused on the study
Technology. At Rose-Hulman, he co-created the Integrated, First-Year Curriculum in Science, Engineering and Mathematics, which was recognized in 1997 with a Hesburgh Award Certificate of Excellence. He served as Project Director a Na- tional Science Foundation (NSF) Engineering Education Coalition in which six institutions systematically renewed, assessed, and institutionalized innovative undergraduate engineering curricula. He has authored over 70 papers and offered over 30 workshops on faculty development, curricular change processes, cur- riculum redesign, and assessment. He has served as a program co-chair for three Frontiers in Education Conferences and the general chair for the 2009 conference. Prof. Froyd is a
Matthew W. Ohland is Professor of Engineering Education at Purdue University. He has degrees from Swarthmore College, Rensselaer Polytechnic Institute, and the University of Florida. His research on the longitudinal study of engineering students, team assignment, peer evaluation, and active and collaborative teaching methods has been supported by over $14.5 million from the National Science Foundation and the Sloan Foundation and his team received Best Paper awards from the Journal of Engineering Education in 2008 and 2011 and from the IEEE Transactions on Education in 2011. Dr. Ohland is Chair of the IEEE Curriculum and Pedagogy Committee and an ABET Program Evaluator for ASEE. He was the 2002–2006 President of Tau
to working at NMSU, John worked at New Mexico’s first Early College High school and helped develop the curriculum for their STEM program, he also has 14 years’ experience in the Civil Engineering Industry. John Ross has a BS in Civil Engineering, and a MA in Agriculture and Extension Education with an emphasis in technology, both from New Mexico State University. Page 26.1461.1 c American Society for Engineering Education, 2015 Teaching a college-wide Introductory Engineering Course within a Freshmen Year Experience College of
, H. (2014). Changes in elementary students’ engineering knowledge over two years of integrated science instruction. Proceedings of the American Society for Engineering Education, Indianapolis, IN.[19] Cunningham, C. M., & Hester, K. (2007, March). Engineering is elementary: An engineering and technology curriculum for children. In American Society for Engineering Education Annual Conference & Page 26.760.14 Exposition, Honolulu, HI.[20] Dyehouse, M., Diefes-Dux, H., & Capobianco, B. (2011). Measuring the effects of integrating engineering into
. Page 26.549.7During Project Year 2, the project team presented three ARM Microcontroller Workshops.These workshops were held at J.F. Drake State Technical College in Huntsville, AL, Chandler-Gilbert Community College in Chandler, AZ, and Columbia Gorge Community College in HoodRiver, OR. Thirty-two educators attended these workshops. Approximately half of them werecurrently teaching microcontroller technology, albeit not an ARM processor. Over half of thefaculty indicated that they plan to integrate workshop material and/or lab experiments in thecourses that they teach.Assessment is a vital part of any curriculum reform project and helps provide useful informationfor workshop enhancements and determining if the workshop has met its objectives
buildings, while developing a deeper understanding of indoor environmental quality, occupant impacts, and energy use. She is the Principal Investigator of a multi-disciplinary and multi-institutional research project, NSF EFRI-Barriers, Understanding, Integration – Life cycle Devel- opment (BUILD). As the associate director of education outreach in the Mascaro Center for Sustainable Innovation, Pitt’s center for green design, she translates research to community outreach programs and develops sustainable engineering programs for K-12 education.Prof. Amy E. Landis, Arizona State University Dr. Landis joined ASU in January 2012 as an Associate Professor in the School of Sustainable Engi- neering and the Built Environment
theoretical framework and an example. Journal for Research in Mathematics Education, 38(4), 370 - 392. 7. Dubinsky, E. & McDonald, M. A. (2002). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research, the Teaching and Learning of Mathematics at University Level, 7 (3), 275-282. 8. Ferrini-Mundy, J. & Graham, K. (1994). Research in calculus learning: Understanding limits, derivatives, and integrals. In E. Dubinsky & J. Kaput (Eds.), Research issues in undergraduate mathematics learning, 19-26. Washington, DC: Mathematical Association of America. 9. Kashefi H., Ismail Z., & Yusof, Y. M. (2010). Obstacles in the Learning of Two-variable Functions
curriculum.2-5 Ingeneral, women and underrepresented minority students are less likely to persist in engineering.6Reports also indicate that the persistence of women and underrepresented minority students inengineering may be adversely affected to a greater degree by their experiences within theengineering climate than their majority male counterparts. Here “climate” indicates perceptions ofstudent belonging and interpersonal interactions between student peers, students and faculty (bothin and out of the classroom), and individual compatibility with pedagogical styles in theirclasses.2,7 An undesirable climate also has the greatest impact on student retention in the first yearsof engineering study.8 Most students who leave engineering do so within
education:administrators’ perspectives on integrating inquiry pedagogy into the curriculum. Higher education, 58(6), 841-855.[18] Fee, S. B., & Holland-Minkley, A. M. (2010). Teaching computer science through problems, not solutions.Computer Science Education, 20(2), 129–144.[19] Qiu, M., & Chen, L. (2010). A problem-based learning approach to teaching an advanced software engineeringcourse. In Education Technology and Computer Science (ETCS), 2010 Second International Workshop on (Vol. 3,pp. 252-255). IEEE.[20] Case, J. M., & Light, G. (2011). Emerging methodologies in engineering education research. Journal ofEngineering Education, 100(1), 186–210.[21] Novak, G.M., Patterson, E.T., Gavrin, A.D., & Christian, W. (1999). Just-in-Time Teaching
events. Ethics and systems thinking are integrated in the course.Technical aspects include crystallography, phase diagrams, microstructures, processingtechniques, and nanotechnology. MATE 232 is a required undergraduate course for all MaterialsEngineering students. During the term that this exercise was conducted, 51 students wereenrolled in MATE 232.The overall framework for the exercise was to first provide a focused lecture related to theenvironmental fate and toxicity of nanomaterials to the participating students from both classes.Then an assignment was provided to the CE 587 students to develop suggestions for responsiblemanufacturing of nanomaterials. Next, these suggestions were provided to the MATE 232students as an assignment. The MATE
for certain conditions or cases. In addition, Hsieh has developedan Integrated Virtual Learning System for Programmable Logic Controller (Virtual PLC). Thisweb-based system uses a combination of animations, simulations, intelligent tutoring systemtechnology, and games to teach about programmable logic controllers [3-5]. Both of thesesystems are good examples of how technology can be used to help students learn simple PLCprogramming concepts.However, for learning to write complex programs, there is no good substitute for hands-onexperience programming a real PLC. Therefore educating students with integrated knowledgeabout automated systems is a pressing need. A project-based curriculum seems to help studentsdevelop an integrated knowledge of a
avariety of software applications and engineering topics. Maryland began offering the PLTWcurriculum in 2002. By 2009, the state had 80 high schools and 34 middle schools teachingPLTW, reaching 100 to 250 students per school, and in 2014 the pre-engineering curriculum wasbeing taught in 106 high schools and 81 middle schools.2 K-12 teachers express a need andappreciation for the technology integrated into the PLTW curriculum that keeps their studentsinvested and interested in engineering using real-world applications.As reported by the American Association of Community Colleges, teachers look to communitycolleges for access to advanced technology and effective strategies.3 For the past seven and ahalf years, The Community College of Baltimore
Foundations project, whose report ispublished in The Curriculum Foundations Project: Voices of the Partner Disciplines [8]. Themathematics knowledge and skills gap encountered by undergraduate engineering studentswhen they enter the engineering courses requiring the use of mathematics abilities, taught inthe three semester calculus sequence and Differential Equations courses, has been welldocumented [1, 4, 9, 10, 5, 6]. However, there is 'widespread agreement among academics andpracticing engineers that a good grounding in mathematics is essential for engineers' [11, 12].Online computer-aided assessment and learning packages have been shown to be an effectivetool for increasing engineering students’ knowledge of experimental design [13, 14
industry and academia. Through his research on product modeling, variant design, design-with-manufacture integration, standardized product data ex- change, as well as digital and virtual engineering he has made numerous contributions to the advance- ment of cross-disciplinary integrated design of complex engineered systems. At the Georgia Institute of Technology (USA) he started spearheading research on Cloud-based Design and Manufacturing, now an emerging high-impact area in which he and his team stand at the forefront. A passionate educator, Dr. Schaefer also conducts research on design education, personalized learning, distance learning, and professional faculty development. His work has resulted in approximately 130
Aerospace Engineering from UF where his thesis, Reliability Analysis of SwampSat, focused on performing reliability analyses on SwampSat, UF’s first CubeSat. His experiences and as the project manager with SwampSat lead to an internship at NESTRA (Japan) where he worked on developing system diagrams and test procedures as well as assembly integration and testing of their three microsatellites that were in development. In addition to his Ph.D. work, Bungo is the project coordinator for Partnerships for International Research and Education (PIRE) program on multiphase fluid science and technologies at the UF’s Chemical Engineering Department funded by the National Science Foundation. As the PIRE project coordinator, he
an intensive writing and presentation experience with criticalfeedback engages students in a continuous reflection on the elements of the complete designprocess throughout the entire semester. It was found that this approach produces students whoare better prepared for their senior design projects and engineering practice. Students noted anincrease in their understanding of machine design concepts as an integration of all their priorpreparatory training. The effectiveness of the revised course structure was evaluated through asurvey of previous and current students.Introduction and backgroundPrior to 2011, one of the common concerns of the Mechanical Engineering department’s seniorstudents was the inability to “engineer” or practice “design
to (a) begin to acquire an understanding ofconstruction hazards grasp difficult technical concepts and; (b) understand how safety sciencechanges over time as a project is observed and lessons are learned; (c) analyze the impacts oftechnical decisions on the execution of the project; and (d) appreciate the importance of ethicalconsiderations in the design and construction decision-making process. Case studies are alsouseful in the education of the engineer and construction manager since they provide anopportunity for students to appreciate the problems of stakeholders to the construction process[21]. Other researchers have integrated case studies into engineering curriculum for differentpurposes [4, 16]. These include: Introductions to
always have an impact on student retention or graduation rates. This finding isconsistent with the understanding that curriculum and instruction have strong impacts on retention.Students who build connections between theoretical academic aspects of the curriculum andprofessional engineering practice are more likely to be retained in engineering. Likewise, those whobuild connections with other students develop a sense of belonging and are less likely to changemajors.The American Society for Engineering Education (ASEE) promotes practices and strategies forretaining students in engineering7. Based on best-practices submitted by College Deans from manyuniversities, a common theme was found: creating a “community” is important for student retention
the workforce needs of the metro-Denver region’s high growthindustries. Aims Community College (Aims) and Arapahoe Community College (ACC)collaborated to form the CATEP partnership. The primary goal of the project was to strengthenthe Computer Information System (CIS) introductory curriculum at both institutions, along withassociated Career and Technical Education (CTE) courses, to better prepare technicians for theworkforce.Vetting of employability skillsThe integration of employability (soft) skills with the technical skills employers report they needfor their ICT workforce served as the foundation for curricular design and implementation.While employability skills may be categorized in many different ways, for the purpose of theCATEP
one of the orientation courses is required by all students in the CoE.Since the creation of these orientation courses, evaluations and student surveys have beenregularly assessed to continuously improve curriculum and better meet the needs of the differenttypes of incoming students.Undergraduate studies in both the United States and Canada have shown that students with peer-and near-peer mentoring supports are more heavily engaged in their academic curricula and aremore socially integrated into engineering-related programs than those students without mentors.1-6 Student evaluations in both the freshman and transfer sections at the University of Oklahomareflect that the mentorship techniques that are currently in place not only encourage
industrystandard to an FPGA-based intelligent controller for daily life applications. Such project willcontribute to the feasibility study of industry standard of wireless IEEE 802.11 and VHDL,FPGA for real world applications [2]. The developed system of FPGA-based microwave ovencontroller integrated with IEEE 802.11 wireless communication is illustrated in Figure 1. Figure 1 The system design of the wireless intelligent micrwave controllerStudents implemented the intelligent controller on FPGA and also developed IEEE 802.11communication functionality for remote control. The features of this team-based project are asfollows. • The project provides students with a great opportunity to obtain extensively hands-on experience to deal with
, particularlycommunity service and humanitarian engineering projects, by creating intentional linkagesbetween the formal curriculum (e.g. developing global awareness) and these informal learningexperiences (e.g. engineering-related study abroad). Such linkages may be particularly effectivein helping develop students’ contextual awareness.” As engineering entrepreneurship education takes shape and continues to leverage co-curricular experiences for learning, Lattuca et al.’s findings suggest that a more in depth analysisof entrepreneurial co-curricular experiences in the context of the Terenzini and Reason’s collegeimpact framework is warranted. There is an organizational reliance on both entrepreneurshipacademic and co-curricular programs, required
Paper ID #12477Outcomes of a Systems Engineering Project for K-12 TeachersProf. Greg Bartus, Stevens Institute of Technology Greg is an Adjunct Teaching Professor and Senior Curriculum and Professional Development Specialist in STEM Education for the Center for Innovation in Engineering and Science Education at Stevens Insti- tute of Technology. Greg has an MAT and BS in Agricultural and Biological Engineering from Cornell University.Dr. Frank T Fisher, Stevens Institute of Technology (SES) Frank T. Fisher is an Associate Professor in the Department of Mechanical Engineering and co-Director of the Nanotechnology Graduate
College during the fall of 2014 in the Incubator experience. Although the pilot study did notfind an advantage of teaching integrated courses, it was an important step towards the re-envisioning of the existing curriculum. The Purdue Polytechnic Incubator operated as a facultynetwork that explored best practices on education by deconstructing the models of traditionaldisciplines. This allowed for re-visioning of the traditional educational model by including co-teaching and group reflections as a core component of the experience. The integration ofhumanities and technology provided with a rich ground for student development. Rather thanfocusing only in a mechanistic approach to technology, students were able to draw parallels withtheir cultural
for a greater diversity oftraining setups to be utilized in a smaller area.IntroductionIn order to effectively teach instrumentation, mechatronic and robotic courses in an Engineeringor Engineering Technology curriculum, a variety of electromechanical laboratory setups aredesirable. [1] Exposing students to an assortment of technologies is also desirable, to give themas broad an experience as is reasonable. Thus, setups containing different sensors, effectors andactuators and indicators are needed. Quite often, the cost of such laboratory setups (or trainers) ishigh, thereby challenging the desire to have numerous full setups.To broaden the students’ programming capabilities, many programs teach such courses acrossboth microcontroller and
solve those needs through an integration of service learning and design.The future of engineering requires individuals to be strong communicators and engage inteamwork and problem solving.The Community Based STEM Program is an engineering service learning program designed forengineering students to help them build professional and leadership skills. This is an engineeringprojects in community service program (EPICS). The EPICS program and model was started atPurdue University. It is proven to be effective at retaining minority and female students, buildingleadership skills, and supports faculty development. It is considered a well-respected model forservice learning in engineering and promotes interest and practice in the STEM fields. The