Paper ID #16195Assessing the Impact of a Flipped Classroom Approach in a MultidisciplinaryUndergraduate Nanotechnology CourseDr. Elena Nicolescu Veety, North Carolina State University Elena Veety received the Ph.D. degree in electrical engineering from North Carolina State University, Raleigh, NC, in 2011. Her research focused on liquid crystal polarization gratings for tunable optical filters and telecommunications applications. Since 2011, she has been a Teaching Assistant Professor of Electrical and Computer Engineering at North Carolina State University. Currently, she is the Assistant Education Director for the NSF
materials for the hands-on activities. • Integrated engineering skill development as described in the Next Generation Science Standards • An optional field trip to the earthquake engineering laboratory at UC Berkeley’s Richmond Field Station to see engineering in action, with a fully-funded bus provided. • Free copy of the materials and lesson plans to participating teachers to support independent teaching of this unit in the future. Table 1: Sample Documentation for 4th Grade CurriculumStudent Learning Students will:Objectives: • Learn that earthquakes are a natural hazard and engineers help design buildings to reduce damage
. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation. Simplicity – the art of maximizing the amount of work not done – is essential.The programmers were then introduced to their clients as part of a laboratory session where eachengineering education major provided a brief presentation on their lesson plan. Eachprogramming team had to evaluate and rank the lesson plans in a bidding-type process. Thesebids were reviewed by the instructor and teams were then assigned to specific lesson plans. Thefirst half of the next laboratory session was dedicated for the teams to interact with their assignedclient in order to discuss the specifics of the lesson plan and to
Paper ID #14868Exploring Proficiency Testing of Programming Skills in Lower-division Com-puter Science and Electrical Engineering CoursesMrs. Karla Steinbrugge Fant, Portland State University Karla Steinbrugge Fant is a Senior Instructor of Computer Science at Portland State University (1990- Current) responsible for introductory and advanced courses in C++, Java, and Data Structures. She su- pervises all 100-level Computer Science courses, teaches three courses a term for the department, and coordinates programs that provide university credit for high school computer science courses. She was awarded a grant for the
. degrees from Xi’an Jiaotong University, China and Ph.D. degree from University of Strathclyde, UK. Prior to joining UBC in 2008, she worked as a research scientist at Ryerson University on various projects in the area of CFD and heat and mass transfer. Dr. Yan has taught a variety of courses including fluid mechanics, fluid machines, mechanics of materials, calculus, and kinematics and dynamic. She has also developed undergraduate fluids laboratories and supervised many capstone projects. Her interest in SoTL is evidence-based teaching strategies, student engagement, faculty development, and teaching and learning communities. Dr. Yan is a registered P.Eng. with APEGBC and has served as reviewer for various
of extensive industry experience in Silicon Valley working in the semiconductor industry performing software development, application engineering, de- sign, testing and verification of digital integrated circuits. He has taught electrical and general engineering classes at Pitt-Johnstown since 2004. His research and teaching interests include Semiconductor circuit Testing and Verification, Low Power Design Analysis, Digital and Embedded Systems, Electromagnetic Wave Scattering, and IC Design Au- tomation Software development. He has authored or coauthored 26 publications and he holds one US patent and another under review. He can be reached at maddu@pitt.edu 225 Engineering and Science Building University of
students per reading room seat ranged from 32 at the University of Missouri to 3.66 atthe University of Pennsylvania. The University of Wisconsin had the largest number of currentperiodicals at 175. Annual expenditures on books ranged from $350 at Worcester PolytechnicInstitute to $2,500 at the University of Iowa.There was also much disagreement among engineering faculty about whether engineeringmaterials should be housed in a library located within the engineering school or in the mainlibrary. Not surprisingly, a number of SPEE members believed that students were better servedby an engineering library located near their classrooms and laboratories. During a discussion onthe design and layout of engineering schools at the 1911 SPEE meeting in
in a materials science laboratory on campus. She also has held an engineering co-op position with Rogers Corporation’s Inno- vation Center, and will pursue her second position with the DOE National Renewable Energy Laboratory this coming spring (2016).Mr. Tyler Byrne Cole, Northeastern University Tyler Cole is a third year undergraduate student studying chemical engineering at Northeastern University. He has been involved in the Connections Chemistry Review program and first year engineering tutoring for two years. Tyler has held a co-op position at Genzyme, and is currently completing his second co-op with Amgen.Prof. Paul A. DiMilla, Northeastern University Paul A. DiMilla is an Associate Teaching Professor
on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
Paper ID #16118Effect of Electrical Alternative Energy Sources on Power GridDr. Masoud Fathizadeh P.E., Purdue University - Calumet Masoud Fathizadeh – PhD, PE Professor Fathizadeh has been with the Department of Electrical and Computer Engineering Technology Purdue University Calumet since 2001. He has worked over 15 years both for private industries and national research laboratories such as NASA, Argonne and Fermi National Laboratories. Dr. Fathizadeh has established his own consulting and engineering company in 1995 spe- cializing in power system, energy management and automation systems. During last twenty years
2011,27, 458-476.7. Agarwala, R.; Abdel-Salam, T. M.; Faruqi, M., Introducing thermal and fluid systems toindustrial engineering technology students with hands-on laboratory experience. In AmericanSociety for Engineering Education, Hawaii, 2007.8. Ma, J.; Nickerson, J. V., Hands-on, simulated, and remote laboratories: A comparativeliterature review. ACM Computing Surveys (CSUR) 2006, 38, 7.9. Ribando, R. J.; Richards, L. G.; O’Leary, G. W., A “Hands-On” Approach to TeachingUndergraduate Heat Transfer. In ASME 2004 International Mechanical Engineering Congressand Exposition, American Society of Mechanical Engineers: 2004; pp 413-422.10. Minerick, A., Desktop experiment module: heat transfer. In American Society
, to enter today’s workforce” (italics added).4 This is a situation that is hardly unique toengineering and concerns about gaps and mismatches between university education andprofessional practice are common in many fields including K-12 teaching, medicine, and law.Because of perspectives like this from ‘industry representatives,’ we were hopeful that we wouldfind willing research partners in industry who saw the value of this research for, if not directlyclosing the gaps between university education and professional practice, at least getting a clearer,empirically grounded understanding of these gaps. We and our research collaborators at anotheruniversity went into this study with combined decades of ethnographic fieldwork experience inother
the team works on different parts of project. Moreover, “real world” projects have no instructors or teaching assistants who are supposed to know the right answers of homework assignments. Students become accustomed, sometimes with encouragement from the teaching staff, to seek help during office hours. However, there is no office hour in the “real world”. ● Faculty members may have “new and crazy” ideas that may be too risky for graduate students who aim to finish their degrees within two (for MS) or five (for PhD) years. The faculty members may want to form a team and perform preliminary studies without committing significant amounts of resources (such as research assistantships
describe how it works to another team. (Analysis of another programmers algorithm design)Teams must manage their design process outside of the class time which makes it difficult forthe instructional team (instructor, graduate teaching assistance, and undergraduate peer teachingassistants) to observe and support the team’s design process and dynamics. Therefore, weintroduce a series of smaller design challenges to provide students an opportunity to hone theirdesign skills. Table 1 outlines some of the Design Challenges we have been using.Introducing a Design ChallengeTeams are given a full 2 hour classroom session to complete a design challenge andcommunicate the results. Teams meet at their assigned table that
Assessment Goals have been created and are outlined below.Mission Statement for Assessment:Rowan College at Burlington County is committed to student outcomes assessment. Results ofassessment are used to support the college mission, improve teaching and learning, plan forresource allocation, and providevalidation to internal and external constituencies.Assessment Goals:1. Create a sustainable college climate for assessing student learning outcomes.2. Support and encourage flexible approaches to assessment.3. Provide training for the assessment process to all full-time and part-time faculty members.4. Use assessment results to support the college mission, improve teaching and learning, plan forresource allocation, and provide validation to internal
Paper ID #16248A Comprehensive Review of Entrepreneurship Course Offerings in Engineer-ing ProgramsDr. S. Jimmy Gandhi, California State University - Northridge Dr. S. Jimmy Gandhi is an assistant professor at California State University, Northridge. His research interests and the courses he teaches includes Quality Management, Lean Manufacturing, Innovation & Entrepreneurship,Sustainability as well as research in the field of Engineering Education. He has over 30 conference and journal publications and has brought in over $500K in research grants to The California State University, Northridge.Dr. Mario G. Beruvides P.E
Paper ID #14694Printing Mozart’s PianoDr. Warren Rosen, Drexel University Dr. Warren Rosen received his Ph.D. in physics from Temple University. He has served as Assistant Professor of Physics at Colby and Vassar Colleges where he carried out research in solar physics, medical physics, and instrumentation. Following this experience he was a research scientist at the Naval Air Warfare Center in Warminster, PA where he established a laboratory for research in high-performance computer networks and architectures for mission avionics and signal processing systems, and served as the Navy’s representative on several national
Sustainability Practices, en- ergy management of Data Centers and to establish Sustainable strategies for enterprises. He is an Affiliate Researcher at Lawrence Berkeley National Laboratory, Berkeley, CA, focusing on the energy efficiency of IT Equipment in a Data Centers. As a means of promoting student-centric learning, Prof. Radhakr- ishnan has successfully introduced games in to his sustainability classes where students demonstrate the 3s of sustainability, namely, Environment, Economics and Equity, through games. Students learn about conservation (energy, water, waste, equity, etc.) through games and quantifying the results. He has pub- lished papers on this subject and presented them in conferences. Before his teaching
areas where chil-dren have naive understandings. As engineering design challenges can teach students science concepts [6,7], it is necessary to consider how students can engage with science ideas related to fluids and heat in adesign concept. Currently, no hands-on tools exist that allow K-12 students to engage in engineering designchallenges related to fluid mechanics and heat transfer.The current research is designed to help students explore these fields and ideas in an open-ended play envi-ronment by providing them with a toolkit to build their own fluid mechanics and heat transfer experiments.The FlowGo toolkit consists of a set of tubes, valves, junctions, plugs, and heaters that can be connected inany order and filled with water to build
conference proceedings. He has been either PI or Co-PI for numerous grants and contracts, totaling more than $10 million in the past 15 years. NASA, Jet Propulsion Laboratory, National Science Foundation, Office of Naval Research, Department of Defense, Department of Education, Texas Higher Education Coordinating Board, Texas Instruments and Lucent Technologies have funded his research projects. He is the recipient of the excellence in engineering research award at the College of Engineering at UTSA in 2010; the best teacher award in the College of Engineering at UTEP in 1994 and NASA monetary award for contribution to the space exploration. He has been the General Chair, Session Chair, TPC Chair, and Panelist in several
engineering problems in the workplace. A vast amount of research has beendedicated to the study of new teaching methods and laboratory curricula to ensure that ourstudents are understanding, learning, and applying this knowledge to solve problems1,2,3.Project-based learning (PBL) provides students with a broader context to the material learned inclass. With project-based learning students shift from a passive to an active learning pattern thatis likely to improve knowledge retention as well as the ability to integrate material from differentcourses4. Each project provides students with the opportunity to apply the knowledge they havelearned in classes, and each problem they face in the project inspires them to explore the materialmore deeply in
10.2 Thermofluids I 39.0 Heat Transfer 8.1 Principles Mechanical Design .2 Energy Science Laboratory 3.0 Energy Systems Design 2.6 Intermediate Thermodynamics 1.1 Thermofluids II .5 Applied Combustion 2.1 Computational Fluid Dynamics 3.2 Renewable Energy 2.1 Renewable Energy Engineering 2.7 Other 21.6 Other 1.6 Total Recruitment: n=704 Possible
Paper ID #16126Evaluation of Interactive Multidisciplinary Curricula in a Residential Sum-mer Program (Evaluation)Mr. Guo Zheng Yew, Texas Tech University Guo Zheng Yew is currently pursuing his doctorate in civil engineering at Texas Tech University with a focus on finite element analysis and glass mechanics. He also teaches an introductory course to freshman engineering students. Prior to his graduate work in the United States, he obtained his Bachelor’s degree from Malaysia and has participated in research projects involving offshore structures in Malaysia.Dr. Paula Ann Monaco, Texas Tech University Dr. Paula Monaco
them to teach mathematics for conceptual understanding. She currently coaches graduate students in the College of Education at Texas Tech University in their dissertation research and writing. c American Society for Engineering Education, 2016 Exploration of Hands-on/Minds-on Learning in an Active STEM Outreach ProgramAbstractThe importance of encouraging interest in science, technology, engineering, andmathematics (STEM) in students from underrepresented groups is well recognized.Summer outreach programs are a common means of accomplishing this goal, butbalancing program content between information and entertainment can be a challengingissue. Typically, programs include hands-on
Undergraduate Students in Engineering through Freshman Courses, ASEE Annual Conference and Exposition, Montreal, Quebec.2. Johnson, J., & Niemi, A. D. (2015). A First-year Attrition Survey: Why Do They Say They Are Still Leaving? ASEE Annual Conference and Exposition, Seattle, Washington.3. Meyer, M. & Marx, S., (2014). “Engineering dropouts: A qualitative examination of why undergraduates leave engineering”, Journal of engineering education, Vol. 103, Issue 4, Pages 525-548, October 20144. Skurla, C., Thomas, B., & Bradley, W., (2004). Teaching Freshman Using Design Projects and Laboratory Exercises to Increase Retention, ASEE Annual Conference and Exposition, Salt Lake City, UT.5. Hall, D., et al., (2008). “Living with the Lab
sections. Non-ES sections have eitherthe traditional recitation sessions or computer laboratories that use the software Mathematica.Both of these options are conducted by graduate teaching assistants.To gauge the effectiveness of the ES approach, the ES group and the non-ES group werecompared relative to two measures: proportion of students who passed Calculus I, that isproportion who earned letter grades of A, B, or C and proportion of students who earned gradesof A or B. It has been shown in the literature that students who earn grades of at least B inCalculus I tend to perform better in subsequent mathematics and physics courses3. The results ofthe statistical analysis are presented in Table 1, where the p-value corresponds to a one-sided
Pacific Gas & Electric.Dr. Farid Farahmand, Sonoma State University Farid Farahmand is an Associate Professor in the Department of Engineering Science at Sonoma State University, CA, where he teaches Advanced Networking and Digital Systems. He is also the director of Advanced Internet Technology in the Interests of Society Laboratory. Farid’s research interests are optical networks, applications of wireless sensor network technology to medical fields, delay tolerant networks. He is also interested in educational technologies and authored many papers focusing on eLearning and Active Learning models. c American Society for Engineering Education, 2016 Techniques in Data
mostsignificant impact on student performance. This is encouraging, as it suggests that a deliberateinvitation to have student reflect on course content as it relates to their other chemicalengineering courses or the overall profession results in improved performance. This is in generalagreement with other findings in teaching and learning, which suggests reflection is a form ofcontent practice, and the different kinds of practice improve learning.5It is observed that the Personalization component on average has a negative correlation andcumulatively has no correlation with exam performance. The Thoughtful puzzle component hasno correlation with exam performance whether considered on average or cumulatively. This maynot mean that these components of the
Paper ID #16486Measuring the Impact of Service-Learning Projects in Engineering: HighSchool Students’ PerspectivesTamecia R. Jones, Purdue University, West Lafayette Tamecia Jones is currently a doctoral student in the Engineering Education department at Purdue Uni- versity with a research focus on K-12 engineering education, assessment, and informal and formal learn- ing environments. She is a graduate of Johns Hopkins and Stanford University. Originally trained as a biomedical engineer, she spent years in the middle school classroom, teaching math and science, and consulting with nonprofits, museums, and summer
Paper ID #14566Visualization of Wave Phenomena by an Array of Coupled Oscillators ¨Dr. Gunter Bischof, Joanneum University of Applied Sciences Throughout his career, Dr. G¨unter Bischof has combined his interest in science and engineering appli- cation. He studied physics at the University of Vienna, Austria, and acquired industry experience as development engineer at Siemens Corporation. Currently he teaches Engineering Mathematics at Joan- neum University of Applied Sciences. His research interests focus on automotive engineering, materials physics, and on engineering education.Mr. Thomas Singraber B.Sc., Joanneum