Jacinto College for thirty seven years and as an adjunct at the University of Houston (Clear Lake), for over thirty years, teaching computer science. I served two years as a Lieutenant in the US Army Intelligence and Security Agency, conducted computer research on Project MAC at MIT and started my own computer software businessMr. James LeRoy Meeks, San Jacinto College I am the lead professor in the field of Cyber security at San Jacinto College. In my tenure at San Jacinto College I have also developed other programs in the field of Computer Technology. c American Society for Engineering Education, 2018 Bridges to STEM Careers Project-Based Success1. IntroductionThe NSF Bridges
-practice model was developed when a team research component was included into theundergraduate aerospace engineering courses of Flight Dynamics and Control I and II. By takingadvantage of the unmanned aerial system fleet owned by the Department of AerospaceEngineering at the University of Kansas (KUAE), students were tasked with developing a physics-based model for one of eighteen different unmanned aircraft platforms, comparing the dynamicmodels to actual flight test data for the platform, and writing papers and presenting them to a panelof KUAE Faculty. As a result, forty-eight independent research projects were conceived, designed,built, and tested by teams of juniors in the aerospace engineering department. Since 2011, eightresearch projects
sustainability b. Evaluate a product/ engineering system’s environmental impacts using Life Cycle Assessment c. Design/ redesign a product/ engineering system to using the engineering principles to improve environmental impactsThe achievement of these goals was assessed through students’ self-evaluations and analysis ofstudents’ coursework. In addition, the objectives are also planned to be assessed throughstudents’ capstone senior projects. But at the time of creation of this work-in-progress paper, thestudents who took this course have not worked on their senior project yet, as a result, this part ofthe assessment is planned to be conducted once the students worked on their senior projects. Toextend and complete this work-in-progress, it
] in Australia, there wereserious issues regarding the low motivation students had to interact with academics, which had an impact ontheir morale. Furthermore, student/staff ratios were very high; hence there was no capacity for any effort fromthe academics. Some academics felt that undergraduates were unmotivated and that there was no value toengaging with them outside the classroom environment. In order to find ways to address these problems, andprovide students with a space to develop sense of belonging and engage with their peers through a co-curricularexperience, the School of Civil Engineering in 2015 developed the Icarus program. Icarus is a voluntary,project-based, research program where students engage with peers in small projects
the field, there are not always theresources to do so, and thus, engineering educators must find creative ways to expose students tothe ways in which they can support sustainable development goals and engage with stakeholders.This paper reports on two activities focused on incorporating sustainable development projectsinto engineering design courses. Both approaches were part of larger projects aimed at reducingor eliminating the use of mercury in mineral processing systems used by artisanal and small-scale mining (ASM) communities in Latin America. In the courses discussed in this paper,interdisciplinary groups of undergraduate engineering students were assigned design challengesthat focused on developing context specific, mercury-free
fruition. Mi- tra was Executive Director, Academic Media Production Services (AMPS), MIT; Senior Vice-President, Knowledge Solutions Business, NIIT (USA), Inc.; the first Chief, Distance Learning Programs Unit, BITS, Pilani, India, and; founder-member, Council of Governors, Pan-Himalayan Grassroots Develop- ment Foundation, Kumaon, India. He has served on the NERCOMP Board of Trustees, USA, was a founder-Board member, Sakai Project Board, USA and co-chaired the Advisory Board, Royal Roads University, Victoria, Canada. Mitra participated in the formulation of the Government of India’s Na- tional Policy on Education 1986; this led to his being one of the authors of a book titled, ”Challenge and Response - Towards a
impractical for many engineeringand engineering technology programs. This paper proposes a portable engine-dynamometer testcell using a one-cylinder all-terrain vehicle (ATV) engine driving a set of high-currentalternators. Engine loading is to be accomplished with a set of electric resistance heaters and apower switching array.Although associated with a large university, this project is being undertaken by a satellitecampus with limited space and financial resources. The plan is to implement the Engine-DynoProject in phases over a period of years using primarily undergraduate students working ondirected projects. The planned phases at this time are as follows: 1. Build a sturdy but portable cart to hold the engine, load cell, accessories, and
Undergraduate Studies (2009- 2013) and Interim Dean (2015) in the College of Engineering. Dr. VanderGheynst’s research focuses on next generation biofuels and bioproducts and agricultural biotechnology. Current projects examine the management of microbial communities in applications including water treatment, food and energy production, and soil treatment for the control of pests and pathogens. More than $9 million of her ex- tramural funding at UC Davis has been in support of undergraduate and graduate student preparation in engineering. This includes a NSF GK-12 award to improve leadership, communication and collaboration skills, and teaching capabilities in engineering graduate students pursuing research in the
achieved in successfully chairing ten or more graduate student culminating projects, theses, or dissertations, in 2011 and 2005. He was also nominated for 2004 UNI Book and Supply Outstanding Teaching Award, March 2004, and nominated for 2006, and 2007 Russ Nielson Service Awards, UNI. Dr. Pecen is an Engineering Tech- nology Editor of American Journal of Undergraduate Research (AJUR). He has been serving as a re- viewer on the IEEE Transactions on Electronics Packaging Manufacturing since 2001. Dr. Pecen has served on ASEE Engineering Technology Division (ETD) in Annual ASEE Conferences as a reviewer, session moderator, and co-moderator since 2002. He served as a Chair-Elect on ASEE ECC Division in 2011. He also
Mines Leslie Light is an Associate Teaching Professor in the Engineering, Design, and Society Division at the Colorado School of Mines, and the Director of the Cornerstone Design@Mines program. She received a B.S. In General Engineering, Product Design from Stanford University and an MBA from The Wharton School at the University of Pennsylvania, specializing in Entrepreneurial Management. Prior to joining Mines she spent 20 years as a designer, project manager, and portfolio manager in Fortune 500 companies and smaller firms in the Silicon Valley and abroad. She is passionate about bringing the user-centered de- sign principles she learned at Stanford and in her career to Mines’ open-ended problem solving program
Process Design IIand Design III course sequence at our minority-serving institution (MSI), Texas A&MUniversity-Kingsville (TAMUK). In this two-semester course sequence, students are introducedto sustainability concepts during instruction in chemical process formulation and processsimulation (Design II). Subsequently, students are further instructed on this topic during theirsemester-long senior design project (Design III) course. For the senior design experience,students are required to form into groups of four and complete a senior design project thatinvolves process simulation, using Aspen Plus software, and cost estimation of a chosenchemical process. The author has been the primary course instructor for this two-coursesequence for only
projects. Now in its third year of continued refinement and analysis, theUniversity is offering 5 sections of the 8 credit hour course (Full Cornerstone) and 20 sections ofa version with 2 separate 4 credit hour courses (Split Cornerstone) that run over the fall andspring semester. Each section is populated with approximately 30 first-year students from a totalfirst-year class size exceeding 700 students.With two versions implemented over the past two years, there has been enough redesign towarrant more discussion. The course redesign has been driven by feedback and evidence,fundamentally following the design process we teach in the course. The data used to drive thisredesign has come from four sources: 1) a survey of students in both the
are unaware ofthe benefits of integrated STEM learning, which involves learning STEM content while alsoaddressing authentic problems. One particularly effective strategy for employing integratedSTEM learning is through Project-Base Learning (PBL), in which students gain real worldexperience in designing and leading their own STEM-focused projects.PBL is a pedagogical teaching approach that places students at the center of learning. The role ofthe teacher is to help facilitate learning by guiding students to essential understandings. Duringeffective PBL experiences, teachers set up rules and parameters that encourage students tocomplete a project within a specified time frame by working cooperatively with peers [2].Students are provided ample
credit hour electivewith no pre-requisites available to both ET and non-ET students. ET401 is intended to fulfill theenvironment, technology, and society (ETS) requirement of the UNHM Discovery program soparticular emphasis is placed on ways 3D printing has effects on both the environment and thecollective society. An early version of the course was offered at USS in the spring semester of2016 with eight participating students. This work describes the structure of the course andmethods used for assessment of the students.Student evaluation was based on participation, discussion board activity, portfolio of weeklyprojects, and a final project. Weekly participation in an online discussion board was required toexplore further impacts of 3D printing
including healthcare systems, project management, cyber security, and supply chain systems.Prof. Daniel P. Johnson, Rochester Institute of Technology (CAST) Daniel Johnson is a Professor Chair of the Department of Packaging Science in the School of Engineer- ing Technology at RIT. He teaches courses in production and supply chain management, manufacturing operations, automation, robotics, and operations strategy.Mr. Todd Dunn, Rochester Institute of Technology (CAST) Todd Dunn, P.E., is an associate professor in Civil Engineering Technology at the Rochester Institute of Technology.Dr. James H. Lee, Rochester Institute of Technology (CAST) James H. Lee is an Associate Professor at the Rochester Institute of Technology
Systems. Her current research interest includes Reliability and Fault Tolerance of Electronic Systems, Programmable Logic Devices and new educational methods emphasizing active learning and project-based-learning. She is member of IEEE and Chair of Women in Engineering Affinity Group for IEEE Long Island, New York. c American Society for Engineering Education, 2018 Undergraduate Research Based Learning for Engineering Technology StudentsAbstractThis paper presents undergraduate research experience for Electrical and Computer EngineeringTechnology students mentored by the author of this paper. Research projects in the areas ofsmart house systems and fault tolerant
currently holds the title of Senior Lecturer and focuses on designing the curriculum and teaching in the freshman engineering program. She is also involved in the NAE Grand Challenge Scholars Program, the ASU ProMod project, the Engineering Projects in Community Service program, the Engineering Futures program, and the Global Freshman Academy. Dr. Zhu also designs and teaches courses in mechanical engineering at ASU, including Mechanics of Materials, Mechanical Design, Mechanism Analysis and Design, Finite Element Analysis, etc. She was part of a team that designed a largely team and activ- ity based online Introduction to Engineering course, as well as a team that developed a unique MOOC introduction to engineering
interests include robotics, computer vision, and image processing, with ongoing projects in humanoid robotics, robot navigation and guidance, biomedical image processing, and stereo and motion vision. He led WPI teams in the DARPA Robotics Challenge and NASA Space Robotics Challenge and is author or co-author of over 100 papers. His research has been supported by DARPA, NASA, NIH, NSF, and industry. He is a member of Sigma Xi, and a senior member of IEEE and ACM.Prof. Craig B. Putnam, Worcester Polytechnic Institute c American Society for Engineering Education, 2018 Robotics Engineering as an Undergraduate Major: 10 Years’ ExperienceAbstract:In 2007 Worcester Polytechnic Institute (WPI) launched an
Paper ID #22057Integration of a Highway Fill Embankment Case Study in Engineering De-sign Courses for Instructional ImprovementProf. Jiliang Li P.E., Purdue University Northwest Dr. Jiliang Li, D.Eng, Ph.D., P.E., M.ASCE, M.ASEE, is an Assistant Professor of Civil Engineering at Purdue University Northwest. Before coming back to teach at University, he had industrial experience in several States with projects consulting experience ranging from small residential, commercial and subdi- vision projects to larger scale State DOT and federal projects after additional courses and research study of geotechnical engineering at
Paper ID #23286Improving Students’ Writing Skills by Integrating Prototyping Activities intheir Writing CourseDr. Amy Hodges, Texas A&M University at Qatar Dr. Amy Hodges is an instructional assistant professor at Texas A&M University at Qatar, where she teaches first-year writing and technical and business writing courses. She also leads the Writing Across the Curriculum initiative and coordinates the undergraduate writing courses. Currently, she is working on a project examining writing strategies used by engineers in multinational workplaces and the impact of these findings on WAC/WID programs. Her primary
is related to increasing pipeline, graduation rate as well as future jobs in the State of Florida related to STEM graduates especially Computer Science and Engineering fields. His recent projects have been funded by DOE, Florida BOG, National Science Foundation, Florida Power and Lights (FPL), Broward County School district and several other sources. His recent research works related to alternative energy applications includes Maximum Power Point Tracking (MPPT) for Solar Systems, Proton Exchange Membrane Fuel Cell (PEMFC) and battery technology to transportation technology. In addition, he has conducted research on the applications of soft computing methodologies to industrial pro- cesses including, desalination
librarian in an effort to deliver broadknowledge on RDM standards and tools from the expertise of the librarian while allowingresearch focused examples and experience from the faculty perspective. This manuscriptdescribes the course, course materials, lecture topics, assignments and projects and assessmenttools for the course. Comparison with similar approaches and courses in the literature along withlessons learned are also provided. An earlier version of this manuscript appeared in ChemicalEngineering Education as “A Graduate Class in Research Data Management”.[15]Methods: A three credit graduate course, Research Data Management, was developed and taughtfor the first time during the Fall 2017 semester. The course was team taught by a
economic pressure5. While the lean approach to management isstill emerging in the university settings, American, Canadian, and British universities are themost committed to its implementation. Nevertheless, Saudi Arabian, African, and Asianuniversities are also adopting lean principles in their practice6.Both newly developed and established administrative processes are potential opportunities forimprovements7. Most projects focus on operations such as financial transactions, facilitiesmanagement, human resources and library services. Based on documented results by earlyadopters in higher education, clear continuous improvement is part and parcel of organizationalstrategic planning and applied within daily operations at forward-thinking
CMMI Division. Like many faculty at strictly undergraduate institutions, weroutinely provide opportunities for students to work on research projects and fund this researchin some situations through external grants. An innovation in this particular grant was the creationof a research collaboration between faculty and students at Lafayette and an NSF-fundedEngineering Research Center (ERC). As stated on the NSF website, “The goal of the ERCProgram is to integrate engineering research and education with technological innovation totransform national prosperity, health, and security.” To accomplish this goal, collaborationsbetween ERCs and other institutions are inherent in the work of an ERC; however, researchcollaborations between ERCs and small
]. While this decision is reasonable from an operational andresource management perspective, research on large classes have shown that students sufferdecreased academic engagement, motivation and achievement [3]–[5] . Instructors, on the otherhand, report having difficulty establishing rapport with their students and a growing inability tomonitor students’ learning gains and provide quality individualized feedback [4]–[6]. To addressthese issues, our project draws from Lattuca and Stark’s Academic Plan model [9], whichincorporates a thorough consideration of factors influencing curricular activities that can beapplied at the course, program, and institutional levels, and assumes that instructors are keyactors in curriculum development and revision
involved in research and evaluation on science, technology, engineering and mathematics education and issues of race/ethnicity, gender and disability for over 30 years. Her BS (Mathematics) is from LeMoyne College and MS (In- structional Technology) and PhD (Teacher Education) are from Syracuse University. Dr. Campbell an Association for Women in Science (AWIS) Fellow, has authored more than 100 publications including coauthoring Building Evaluation Capacity: Guide I Designing A Cross Project Evaluation and Guide II Collecting and Using Data in Cross-Project Evaluations”; ”A Framework for Evaluating Impacts of Informal Science Education Projects”; ”Engagement, Capacity and Continuity: A Trilogy for Student Success
Paper ID #22385LEED R LabTM : Which Compliance Path is Best for Your University?Mrs. Janet Fick, Ball State University Janet Fick is an Instructor in the Construction Management program in Ball State University’s College of Architecture and Planning. She has taught in the areas of sustainability, immersive projects, Auto- CAD/Revit and construction management for fifteen years. She is a Registered Architect and LEED AP with more than twenty years professional experience in the architecture, interior design and construction management fields.Dr. James W. Jones, Ball State University Dr. James W. Jones is the Chair of the
interested in engineering design education, engineering education policy, and the philosophy of engineering education.Prof. Michael S. Thompson, Bucknell University Prof. Thompson is an associate professor in the department of Electrical and Computer Engineering at Bucknell University, in Lewisburg, PA. While his teaching responsibilities typically include digital design, computer-related electives, and senior design, his focus in the classroom is to ignite passion in his students for engineering and design through his own enthusiasm, open-ended projects, and connecting engineering to the world around them. His research tends to focus on the application of mobile computing to a variety of non-technical problems. He holds
him an important perspective and exposure to industry. He has been directly involved in at least 20 different engineering projects related to a wide range of industries from petroleum and nat- ural gas industry to brewing and newspaper industries. Dr. Ayala has provided service to professional organizations such as ASME. Since 2008 he has been a member of the Committee of Spanish Translation of ASME Codes and the ASME Subcommittee on Piping and Pipelines in Spanish. Under both member- ships the following Codes have been translated: ASME B31.3, ASME B31.8S, ASME B31Q and ASME BPV Sections I. While maintaining his industrial work active, his research activities have also been very active; Dr. Ayala has published
-based project. In many computing curricula, this is thefirst, and often only, coursework where students tackle a large team project. In the project work,students demonstrate their transference of knowledge of software engineering principles andpractices gained from lecture material and reading the textbook to actual project work.Our Experiences with the CourseOf all the courses in Rochester Institute of Technology software engineering curriculum, ourSWEN-261 Introduction to Software Engineering course is the one course that we never feel wehave done correctly. The students take the course in their second year after a first-year computerscience sequence. This is perhaps a bit earlier in our students' program than at other institutions.The course