particularlydeveloped for concept mapping and can be downloaded online at http://cmap.ihmc.us. With thissoftware, students could easily create, edit, and modify digital concept maps.Throughout the 16-week semester, students learned eight topics, corresponding to eight textbookchapters, in Engineering Dynamics [14]. Four topics were on particle dynamics, and the otherfour on rigid-body dynamics. After the teaching and learning of a topic was completed, eachstudent developed a concept map for the topic. Students were provided three to five days toconstruct their concept maps after class. At the end of the semester, each student had created atotal of eight concept maps covering eight topics.Questionnaire surveyAt the end of the semester, a questionnaire survey
Paper ID #25410Why Do Students Leave? An Investigation Into Why Well-Supported Stu-dents Leave a First-Year Engineering ProgramDr. Melissa Lynn Morris, West Virginia University Melissa Morris is currently a Teaching Associate Professor for the Freshman Engineering Program, in the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University (WVU). She graduated Summa cum Laude with a BSME in 2006, earned a MSME in 2008, and completed her doctorate in mechanical engineering in 2011, all from WVU. At WVU, she has previously served as the Undergraduate and Outreach Advisor for the Mechanical
target audience: civil engineers in the fall of 2017 andmechanical, aerospace, and chemical engineers in the spring of 2018. All of the teaching materials areavailable at http://ece.uah.edu/~gaede/capacity_building/teaching/. We are not aware of any otherinstitution that has offered this type of instruction. If such instruction exists, we can use it tostrengthen our offering.Lecture 1 The lecture material begins with the definition of cyber security. It then introduces theusage of embedded systems in the ICS that are used in dam control and monitoring, powersubstations, water distribution systems, oil/gas distribution systems, and petrochemicalrefineries. In each of these industrial control systems, the instructor helps the students
spiritually, and enjoying her family and friends. Moreover, Dr. Borges is treasurer and co-chair of the Northeastern Association for Science Teacher Education (NE-ASTE) where faculty, researchers, and educators inform STEM teaching and learning and inform policy.Dr. Vikram Kapila, NYU Tandon School of Engineering Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH
as designing and testing of propulsion systems including design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation course as well as for quality control undergraduate
in which to get there. In addition to his engineering work, he also competes on Saint Louis Universities division 1 cross county and track and field team year round. Since he first stepped foot on campus he has continually pursued community service and giving back.Mr. T. Alex Ambro, Saint Louis UniversityWilliam HiserMr. Andrew RiddleDr. Sanjay Jayaram, Saint Louis University Dr. Sanjay Jayaram is an associate professor in the Aerospace and Mechanical Engineering Department of Saint Louis University. He obtained his Ph.D. in Mechanical Engineering from University of Central Florida in 2004. He teaches control systems/mechatronics, space systems engineering and astronautics related courses as well as engineering
populations.Visscher-Voerman [23] conducted retrospective interviews to identify 16 “principles” used byinstructional designers. Kirschner and colleagues [24] explored how instructional designers (inboth academic and business contexts) used Visscher-Voerman’s 16 principles through a Delphi-type study and a team design task. Perez and colleagues [25] used a laboratory think-aloudprotocol to investigate instructional design practices among both novices and experts.Despite differences in sample populations and data collection methods among the studies byPerez and colleagues [25], Visscher-Voerman [23], and York and Ertmer [6], these studiesreported some similarly themed heuristics/approaches. Each of the studies featured at least one(and usually more) heuristic
, Environmental and Ecological Engineering as well as Curriculum and Instruction in the College of Education. He is a registered professional engineer and on the NSPE board for Professional Engineers in Higher Education. He has been active in ASEE serving in the FPD, CIP and ERM. He is the past chair of the IN/IL section. He is a fellow of the Teaching Academy and listed in the Book of Great Teachers at Purdue University. He was the first engineering faculty member to receive the national Campus Compact Thomas Ehrlich Faculty Award for Service-Learning. He was a co-recipient of the National Academy of Engineering’s Bernard Gordon Prize for Innovation in Engi- neering and Technology Education and the recipient of the National
consequences of traditional notions of rigor? • How does theater function as a space in which difficult subjects can be safely explored? What are the similarities between laboratories and theaters as educational spaces? How might the educational experience in laboratories be enhanced by exploiting the parallels between labs and theaters? Figure 1. Excerpts from the Discussion Notes Created for Session U434B. completing the notes for all technical sessions, I synthesized a necessarily impressionisticAftersummary of 14 common and emergent themes from the 2018 LEES program. This summaryappears in Appendix B. Based on this input
Paper ID #25901A Longitudinal Study of the Effects of Pre-College Preparation and Use ofSupplemental Instruction during the First Year on GPA and Retention forWomen in EngineeringMr. Bradley Joseph Priem, Northeastern University Bradley Priem is a fourth year undergraduate student at Northeastern University, majoring in chemical en- gineering and minoring in biochemical engineering. He has been involved in the Connections Chemistry Review program for three years. He has also held an undergraduate research position in a biomaterials laboratory on campus. He has completed two co-ops in the biotech industry, and is currently
projectplanning tend to receive less focus in engineering curricula. Students often perceive them not as“core” knowledge in their engineering majors. Increasing engineering student interest, attention,engagement and deeper learning in these knowledge areas is a challenge. In addition to makingcourse materials relevant to these engineering disciplines, instructors have to employ variousactive learning initiatives to ensure effective teaching and learning are actually taking place. Thispaper presents a case study of using a poll app called Poll Everywhere as an active learningactivity in a required senior-level “engineering project management” course for civil andenvironmental engineering students. As a question driven and student active tool, the poll
University of Applied Sciences in Groningen, where he taught both in Dutch and in English. During this time his primary teaching and course develop- ment responsibilities were wide-ranging, but included running the Unit Operations laboratory, introducing Aspen Plus software to the curriculum, and developing a course for a new M.S. program on Renewable Energy (EUREC). In conjunction with his teaching appointment, he supervised dozens of internships (a part of the curriculum at the Hanze), and a number of undergraduate research projects with the Energy Knowledge Center (EKC) as well as a master’s thesis. In 2016, Dr. Barankin returned to the US to teach at the Colorado School of Mines. His primary teaching and course
land and marine environ- ments and ship design for the U.S. Navy.Dr. Stephanie Sheffield, University of Michigan Dr. Sheffield is a Lecturer in Technical Communication in the College of Engineering at the University of Michigan.Mr. Magel P. Su, California Institute of Technology Magel P. Su is a PhD student in the Department of Applied Physics and Materials Science at the California Institute of Technology. He earned a B.S.E in materials science and engineering and a minor in chemistry from the University of Michigan. At Michigan, he was a member of the Ultrafast Laser - Material Interac- tion Laboratory and the Engineering Honors Program. He also served as an instructor for several courses including
Paper ID #25917Mechanics Knowledge Enhanced with Videos Illustrating Concepts Experi-enced with Hands-on ActivitiesDr. Rania Al-Hammoud P.Eng., University of Waterloo Dr. Al-Hammoud is a Faculty lecturer (Graduate Attributes) in the department of civil and environmental engineering at the University of Waterloo. Dr. Al-Hammoud has a passion for teaching where she con- tinuously seeks new technologies to involve students in their learning process. She is actively involved in the Ideas Clinic, a major experiential learning initiative at the University of Waterloo. She is also re- sponsible for developing a process and
Engineering.” Journal of Engineering Education, Vol. 101, No. 2, pp, 319-345 2. Lichtenstein, G. , McCormick, A. C., Sheppard, S. D. and Puma, J, “Comparing the Undergraduate Experience of Engineers to All Other Majors: Significant Differences are Programmatic.” Journal of Engineering Education, 99: 305-317, October 2010. 3. Felder and R. Brent, “Why Students Fail Tests: 1. Ineffective Studying.” Chem. Engr. Education, 50(2), 151-152 (Spring 2016). 4. Newcomb and Bagwell, “Collaborative Learning in an Introduction to Psychological Science Laboratory: Undergraduate Teaching Fellows Teach to Learn.” Teaching of Psychology, April 1997, Vol. 24(2), pp. 88-95. 5. V. Tinto, “Taking Retention Seriously: Rethinking the
Paper ID #27524Does Peer Mentoring Help Students be Successful in an Introductory Engi-neering Course?Dr. Qudsia Tahmina, Ohio State University Dr. Qudsia Tahmina, The Ohio State University at Marion Dr. Qudsia Tahmina is an Assistant Professor of Practice at The Ohio State University at Marion and teaches first and second year engineering courses. c American Society for Engineering Education, 2019 Complete Paper- Research: Does Peer Mentoring help students be successful in an introductory engineering course?AbstractPrevious literature shows that first year engineering students
wall, (ii) develop a stress-mediated model of urinary bladder adaptive response, and (iii) understand the fundamental mechanisms that correlate the mechanical environment and the biological process of remodeling in the presence of an outlet obstruction.Dr. Geoffrey Recktenwald, Michigan State University Dr. Recktenwald is a lecturer in Mechanical Engineering at Michigan State University where he teaches courses in in mechanics and mathematical methods. He completed his degree in Theoretical and Applied Mechanics at Cornell University in stability and parametric excitation. His active areas of research are dynamic stability, online assessment, and instructional pedagogy. c American Society
college for in the first place.Conclusion:It is absolutely possible to create engaging, high-impact, inspirational exercises on the cheap.You can do it – we’re going to take a leap here and guess that your campus has buildings too! Goahead and use them as real-world laboratories for teaching sustainability, civil engineering andbuilding science. Students like and respond positively to this kind of instruction and we believethe students did better because of it. You and your students will be pleased with how rapidly andmeaningfully you can engage a complex building-wide problem when that building is on yourown campus.Bibliography[1] F. Rajabipour and A. Radlinska, "Sustainable Construction: Active Learning of Sustainability Through Design and
propulsion systems including design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation course as well as for quality control undergraduate and graduate courses in ET
of 25 and interpretedthe research topics based on the visualization of the LDA results.In conclusion, our experiment with the LDA approach helped us quickly develop an understanding offaculty research interests, would provide good evidence from which to make decisions on collectionmanagement, reference and library instruction, and show the possibility of academic libraries to make useof data and data science techniques in the era of big data.IntroductionLiaison librarians face the challenge of learning faculty research and teaching needs in a timely manner.Wood and Griffin gave an overview of the current approaches including website analysis, interview,course syllabus analysis and large-scale surveys [1]. Department websites, especially
Paper ID #26529Disparate Electrospray Systems for Undergraduate and Graduate EducationDr. Amelia Greig, California Polytechnic State University, San Luis Obispo Dr Amelia Greig has degrees in Mechanical and Aerospace Engineering, and Science from the University of Adelaide, and a PhD in Physics from the Australian National University. She teaches courses in space- craft propulsion and the space environment at Cal Poly San Luis Obispo, and also leads the Aerospace Engineering Department’s micro-propulsion research activities.Mr. Alex Powaser, California Polytechnic State University, San Luis Obispo Alex is a graduate
, OH. She holds a bachelor’s degree in mechanical engineering from Ohio Northern University.Dr. Rachel Louis Kajfez, Ohio State University Dr. Rachel Louis Kajfez is an Assistant Professor in the Department of Engineering Education at The Ohio State University. She earned her B.S. and M.S. degrees in Civil Engineering from Ohio State and earned her Ph.D. in Engineering Education from Virginia Tech. Her research interests focus on the intersection between motivation and identity of undergraduate and graduate students, first-year engineering programs, mixed methods research, and innovative approaches to teaching. c American Society for Engineering Education, 2019 Engineering Identity in Pre
developed and managed several reten- tion programs at the college: Engineering Concepts Institute (ECI) Summer Bridge; Engineering Liv- ing Learning Community (LLC), Educating Engineering Students Innovatively (EESI) and Peer-Assisted Study Sessions (PASS). Dr. Caldwell also serves as the activity director for the Title III program Engi- neering Learning Community. Those collective programs have nearly doubled the first-year retention of underrepresented minorities at the college. Additionally, Dr. Caldwell serves as a teaching professor for the First-Year Engineering Lab (FYEL), which is part of the pre-engineering program. c American Society for Engineering Education, 2019 Experience: An
Paper ID #26062Implementation of a Design Project in a Freshman Engineering Physics CourseDr. Inci Ruzybayev, York College of Pennsylvania Inci Ruzybayev is Assistant Professor in Engineering and Computer Science at York College of Pennsyl- vaniaBenjamin J. ZileDr. Scott F. Kiefer, York College of Pennsylvania Scott Kiefer has spent the past eighteen years teaching mechanical engineering at four institutions. As an exemplary teaching specialist in mechanical engineering at Michigan State University, Scott received the Withrow Award for Teaching Excellence, given to one faculty member in the College in Engineering for
have also offered a summer section of this course to newly admittedengineering students who wanted to make a head start in their studies.Summary of Project Results:Mathematics Enrichment SessionsThe performance of students who opted to register for the ES sections are compared to those whochose the non-ES sections. Non-ES sections have either the traditional recitation sessions orcomputer laboratories that use the software Mathematica. Graduate teaching assistants conductboth of these options. The results from the initial implementation of ES are presented in [5].To gauge the effectiveness of the ES approach, the ES group and the non-ES group werecompared relative to two measures: proportion of students who passed Calculus I, that isproportion
, and inclusion and diversity. She has been honored by the American Society of Engineer- ing Education with several teaching awards such as the 2004 National Outstanding Teaching Medal and the 2005 Quinn Award for experiential learning, and she was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland)tephanie Farrell is Professor and Founding Chair of Experiential Engineering Education at Rowan University (USA) and was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland).Dr. Kauser Jahan P.E., Rowan University Kauser Jahan, is a Professor of Civil and Environmental Engineering at Rowan University. She received her B.S.C.E. from the
Electrical Engineering and MS Biomed- ical Engineering degrees from Drexel University, and her PhD Bioengineering degree from the University of Washington. Between her graduate degrees, she worked as a loop transmission systems engineer at AT&T Bell Laboratories. She then spent 13 years in the medical device industry conducting medical de- vice research and managing research and product development at several companies. In her last industry position, Dr. Baura was Vice President, Research and Chief Scientist at CardioDynamics. She is a Fellow of the American Institute of Medical and Biological Engineering (AIMBE).Vincent Chen, Loyola University Chicago Dr. Vincent Chen is an Assistant Professor of Biomedical
Paper ID #27214Professional Expectations and Program Climate Affect the Professional For-mation of EngineersDr. Manuel Alejandro Figueroa, The College of New Jersey Dr. Manuel Figueroa is an Assistant Professor in the School of Engineering at The College of New Jersey. He teaches in the Department of Integrative STEM Education and prepares pre-service teachers to become K-12 technology and engineering educators. His research involves engaging college students in human centered design and improving creativity. He also develops biotechnology and nanotechnology inspired lessons that naturally integrate the STEM disciplines
NSF funded research project: Academic Career Success in Science and Engineering-Related Fields for Female Faculty at Public Two-Year Institutions. She is co-author of The Faculty Factor: Reassessing the American Academy in a Turbulent Era.Dr. Comas Lamar Haynes, Georgia Tech Research Institute Comas Lamar Haynes is a Principal Research Engineer / faculty member of the Georgia Tech Research In- stitute and Joint Faculty Appointee at the Oak Ridge National Laboratory. His research includes modeling steady state and transient behavior of advanced energy systems, inclusive of their thermal management, and the characterization and optimization of novel cycles. He has advised graduate and undergradu- ate research
teaching practices.Dr. Emily Anna Dare, Florida International University Dr. Emily Dare is an Assistant Professor of Science Education at Florida International University. Pre- viously, she taught at Michigan Technological University from 2015-2018, where she is still an affiliated faculty member in the Department of Cognitive and Learning Sciences. Dr. Dare’s research interests are focused on K-12 STEM education. In particular, she is interested in supporting science teachers’ reform- based instruction while simultaneously understanding their beliefs. As science classrooms shift to more integrated STEM approaches, this is especially critical. Additionally, Dr. Dare has a passion for working with K-12 students to