. Applying software-defined networking to minimize the end-to-end delay of network services. ACM SIGAPP Applied Computing Review 18, 30–40 (2018). 3. Topham, L., Kifayat, K., Younis, Y. A., Shi, Q. & Askwith, B. Cyber security teaching and learning laboratories: A survey. Information & Security 35, 51 (2016). 4. Sharma, S. K. & Sefchek, J. Teaching information systems security courses: A hands-on approach. Computers & Security 26, 290–299 (2007). 5. Willems, C. & Meinel, C. Online assessment for hands-on cyber security training in a virtual lab. In Global Engineering Education Conference (EDUCON), 2012 IEEE, 1–10 (IEEE, 2012). 6. Xiong, K. & Pan, Y. Understanding protogeni in networking courses for research and
Paper ID #24847Combining Flipped Classroom and Integrating Entrepreneurially MindedLearning in DC Circuit Analysis and Design CourseDr. Jing Guo, Colorado Technical University Dr. Jing Guo is a Wireless Device Applications Engineer at Keysight Technologies and an adjunct profes- sor at Colorado Technical University (CTU) . She was a Professor in Engineering Department at Colorado Technical University. She has 14 years of teaching experience at the university level and taught over 30 different undergraduate and graduate courses in Electrical and Computer Engineering area.Prof. John M. Santiago Jr, Freedom Institute of
assess their effectiveness.Inquiry-based Hands-on Experiments in Neuroscience The focus of this project is to expand the opportunities available to actively engagestudents in hands-on learning and foster an entrepreneurial minded learning environment in aneuroscience laboratory course. This project is a seed grant to pilot the activities this fall andassess the effectiveness of the interventions being proposed in a neuroscience course and in anintroductory engineering course as well.Lessons Learned and Moving Forward Prior to the Teaching Institute, faculty in STEM fields outside of engineering did nottypically associate EML as being a viable tool worth integrating into their classroom. However,they saw significant value in using
higher qualifications. c) The shortage and lack of suitable learning resources such as frequent electricity cuts and limited access to the internet, and to libraries and laboratories, are another major issue to be addressed. d) When the newly equipped laboratory is inaugurated, it will benefit a few junior lecturers who have recently finished their studies abroad, whereas many of the senior and newly employed lecturers will not be qualified to use these facilities for their teaching and research. e) The lack of proper investment in higher education: the budget of the MoHE supporting all public universities is 200 Million US Dollars. The budget of
uses and value of the EX-5515A. Acollaboration between JU and Engineer Inc. was established to create an aftermarket selection ofnew coupons made from more diverse materials and using different fabrication methods thanPASCO’s available samples. Of interest are samples essentially identical to one of the ninesample types available from PASCO but possessing one differentiating aspect or feature.Changing one sample attribute allows apparatus users to explore and compare how modificationsimpact the stress-strain curve. This added feature dramatically enriches the utility of EX-5515Aas a laboratory teaching tool. It allows students to explore stress-strain sample properties beyondmaterial composition into areas such as shape factors, stress
Center (CMEC).These robots are available to support the course labs that are included in the concentration.Students work in groups with these robots during the laboratory sessions. These educational robotsare typical six-axis short arm industrial robots and are relatively easy to integrate and learn how touse. The robots are capable of demonstrating several industrial applications and allow for futureintegration of a vision system and other field input devices. This hardware is essential for thisconcentration because it provides hands-on equipment for the students and offers an active courseapproach. The programming of the robot is completed by using the teach pendant. The five majorparts of a robot includes the controller, manipulator, end
, AL, USA. He is currently working as an assistant professor at the Department of Intelligent Systems and Robotics, Hal Marcus College of Science and Engineering, University of West Florida (UWF), Pensacola, FL, USA. At UWF, Dr. Rahman contributes to the Ph.D. program in Intelligent Systems and Robotics, and directs the Human-friendly and Interactive Robotics Laboratory (HIR Lab). His research and teaching interests include robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, engineering psychology, virtual reality, artificial intelligence, machine learning, CPS, IoT, computer vision, biomimetics and biomechanics with applications to industrial manip- ulation and
the Science and Engineering Research Council at the University of Liverpool, UK. Dr. Albin conducted research on Si and GaAs electronic devices and semiconductor lasers at the research laboratories of GEC and ITT and published numerous articles in this field. He was a professor of Electrical and Computer Engineering at Dominion University. He has advised 14 PhD and 19 MS students. He received numerous awards: Doctoral Mentor Award 2010; Excellence in Teaching Award 2009; Most Inspiring Faculty Award 2008; Excellence in Research Award 2004; and Certificate of Recognition for Research - NASA, 1994. He is a Senior Member of the IEEE and a Member of the Electrochemical Society.Prof. Petru Andrei, Florida A&M
Paper ID #24669Effective Faculty Development – More than Time in the SeatDr. Louis J Everett P.E., University of Texas, El Paso Dr. Everett is the MacGuire Distinguished Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett’s current research is in the areas of Mechatronics, Freshman Programs and Student Engagement. Having multiple years of experience in several National Laboratories and Industries large and small, his teaching brings real world experiences to students. As a former NSF Program Director he works regularly helping faculty develop strong education proposals
Paper ID #25316Using More Frequent and Formative Assessment When Replicating the WrightState Model for Engineering Mathematics EducationDr. Leroy L. Long III, Embry-Riddle Aeronautical University Dr. Leroy L. Long III is an Assistant Professor of Engineering Fundamentals at Embry-Riddle Aeronau- tical University in Daytona Beach, FL. He earned his PhD in STEM Education with a focus on Engineer- ing Education within the Department of Teaching and Learning at The Ohio State University (OSU). He earned his Master’s in Mechanical Engineering at OSU and his Bachelors in Mechanical Engineering at Wright State University. Dr
Technologies Office, where he managed multiple interna- tional research programs and provided strategic analysis to guide R&D strategy. He also has an ongoing collaborative appointment with the Strategic Energy Analysis Center at the National Renewable Energy Laboratory. c American Society for Engineering Education, 2019 Using campus energy system data to save energy and provide students with real-world learning experiencesAbstractA variety of engineering classes teach students how to analyze thermodynamic systems or evenprovide students with training on simplified lab models of real systems. However, relatively fewcourses provide students with exposure to actual thermodynamic
laboratory explorations and adesign project that were designed to expose students to different disciplines and teach technicalcommunication skills. These one-day laboratory experiences and multi-day design project werenot designed with EML in mind, however, as the university incorporates EML into itscurriculum, how well these labs already incorporate these principles is of interest. Therefore, thispaper will investigate: How much EML is already incorporated into the laboratory and designproject curriculum and which areas of EML do each exploration lack? To investigate this task,each lab was coded against an EML curriculum objective matrix that was developed to designand evaluate EML curriculum. This facilitated quantification as to how well each
. The flexibility and convince of learning on demandis an education trend that is constantly evolving. The pervasiveness of communication technology andconnected media enables educators to teach via nontraditional tools such as recorded videos, live streamingof lectures, and live discussion panels. Bourne et al. (Olin et al. 2005) listed three requirements for effectiveonline engineering education delivery. Those are 1) online courses provide comparable quality to thecourses offered traditionally, 2) Students can access the courses anytime and from anywhere, and 3) theonline offered topics cover a broad area of engineering disciplines.The third requirement is still a far reach for engineering education. Despite the apparent benefits of
, technology, architecture and buildingsciences, through integration of VR. VR was used to leverage a seamless virtual application thuscomplementing theories with unlimited interactive pedagogies, which kept learners engaged,interested and ultimately fosters retention particularly in haptic courses. Specifically, this studyintegrates the VR technology into an Environmental Science Laboratory to support teaching,enhance students’ understanding, and increase retention as well as triggering an interactiveeducational environment. This paper focuses on the method of advancing haptic learning withVR through introducing and analyzing five modules taught in a building sciences laboratorycourse in addition to sharing limitations and some lessons learned of
Waterloo Dr. Al-Hammoud is a Faculty lecturer (Graduate Attributes) in the department of civil and environmental engineering at the University of Waterloo. Dr. Al-Hammoud has a passion for teaching where she con- tinuously seeks new technologies to involve students in their learning process. She is actively involved in the Ideas Clinic, a major experiential learning initiative at the University of Waterloo. She is also re- sponsible for developing a process and assessing graduate attributes at the department to target areas for improvement in the curriculum. This resulted in several publications in this educational research areas. Dr. Al-Hammoud won the ”Ameet and Meena Chakma award for exceptional teaching by a student
course and curriculum development. He is a Fellow of the ASME.Dr. Bonnie H. Ferri, Georgia Institute of Technology Dr. Bonnie Ferri is a Professor in the School of Electrical and Computer Engineering and a Vice Provost at Georgia Tech. She performs research in the areas of active learning, embedded controls and computing, and hands-on education. She received the IEEE Undergraduate Education Award and the Regents Award for the Scholarship of Teaching and Learning. She received her BS in EE from Notre Dame, her MS in ME/AE from Princeton, and her PhD in EE from Georgia Tech.Dr. Robert S. Kadel, Georgia Institute of Technology Dr. Rob Kadel is Assistant Director for Research in Education Innovation with the Center for
engineering at Tuskegee University, AL, USA. He is currently working as an assistant professor at the Department of Intelligent Systems and Robotics, Hal Marcus College of Science and Engineering, University of West Florida (UWF), Pensacola, FL, USA. At UWF, Dr. Rahman contributes to the Ph.D. program in Intelligent Systems and Robotics, and directs the Human-friendly and Interactive Robotics Laboratory (HIR Lab). His research and teaching interests include robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, engineering psychology, virtual reality, artificial intelligence, machine learning, CPS, IoT, computer vision, biomimetics and biomechanics with applications to industrial
at Texas A&M University. He received his Ph.D. in Materials Science & Engineering from Clemson University’s Int’l Center for Au- tomotive Research. His professional experience is in the automotive industry including at the Ford Motor Company. At TAMU, he teaches Mechanics, Manufacturing and Mechanical Design to his students. His research thrusts include bioinspired functionally-graded composites, additive/subtractive manufacturing processes, laser surface texturing, tribology, visuo-haptic VR/AR interfaces and engineering education.Ms. Shelly Tornquist, Texas A&M University Director of Spark! PK-12 Engineering Education Outreach with Texas A&M University Engineering. Her team strives to ignite and
get the answercorrect. In the second modality, students will be given an identical set of assignments with a limitednumber of attempted submissions to the auto-grader. To date, outcomes have been assessed for bothstudent groups through direct comparison of homework grades and through student surveys. In futureiterations of this work it is proposed that the results of common examinations also be used to determinewhich strategy optimizes individual student performance.2 BackgroundThis study describes the results of student outcomes under varying homework assessment strategies inEGR 102: Introduction to Engineering Modeling. EGR 102 is a freshman laboratory course with 200-350students per semester, divided into 30 student laboratory groups
space to support the minor. Will additional space be needed or can the existing spaces be scheduled to accommodate the new class offerings ● Flexibility of teaching assignments allowing faculty to conduct classes with very low enrollment, especially in the first few program years. ● Financial support for laboratory equipment, supplies, and transportation for field tripsIn our case, most of the initial costs were absorbed by creative scheduling of classroom space,strategic faculty hiring, and supplementary (adjunct) teaching contracts for new courses withsmall enrollments. The remainder of the program initiation costs were covered throughcollaboration with supporting industry and institutions. For example, the cost
perceived and I think very real discouragement that young engineering faculty receive from… traditional administrators that engineering research is in a laboratory and is traditional in the sense that it involves scientific equipment and established research protocol and again, laboratory based. And there is a kind of a discouragement to not allow this distraction, or it's even viewed as a distraction, engineering education research, as a young faculty member… I was told specifically not to allow, my teaching not to distract from my research nor my interest in the scholarship of teaching and learning to distract from my research.The interviewee’s reflection on his pre- and post-tenure experience illuminate several layers
professor of mechanical engineering at Tuskegee University, AL, USA. He is currently working as an assistant professor at the Department of Intelligent Systems and Robotics, Hal Marcus College of Science and Engineering, University of West Florida (UWF), Pensacola, FL, USA. At UWF, Dr. Rahman contributes to the Ph.D. program in Intelligent Systems and Robotics, and directs the Human-friendly and Interactive Robotics Laboratory (HIR Lab). His research and teaching interests include robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, engineering psychology, virtual reality, artificial intelligence, machine learning, CPS, IoT, computer vision, biomimetics and biomechanics with
patents and has over twenty-five years of experience in industry and academia. Research Interests Sylvia Wilson Thomas, Ph.D. leads the Advanced Membrane/Materials Bio and Integration Research (AMBIR) laboratory at USF. Dr. Thomas’ research and teaching endeavors are focused on advanced mem- branes/materials for alternative energy sources, sustainable environments, electronics, and bio-applications from the micro to the nano scale. Her research investigates the fabrication of inorganic and organic thin films and nanofibers for device integration. Thomas’ research group specializes in characterizing, mod- eling, and integrating membranes that demonstrate high levels of biocompatibility, thermal reflectivity
Paper ID #24838The Education of Science, Engineering and Technologies in War-affected Coun-triesDr. Bahawodin Baha, University of Brighton Dr Bahawodin Baha is a principal lecturer at University of Brighton in England since 1989, where he has been teaching and conducting research in electronic engineering. Besides his teaching in the UK, he has been helping Higher Education (HE) in Afghanistan since 2005 and has conducted my projects on improving higher education in Afghanistan. Recently, he was on sab- batical leave for two years and was technical advisor at the Ministry of Communication and Information Technology
, creativity and innovation in construction. .Dr. George D. Ford, Mississippi State University Dr. George Ford P.E. is the Director of Mississippi State’s Building Construction Science (BCS) pro- gram. Dr. Ford has 15 years of industrial experience including corporate work, and 16 years of teaching experience at the post-secondary level.Ms. Tori Thompson, Mississippi State University c American Society for Engineering Education, 2019 Is Summer Semester Effective Enough in Studio-based Construction Programs? Saeed Rokooei, Ph.D., PMP, George Ford, Ed.D., PE, Tori Thompson Mississippi State UniversityAbstractLecture and lab course formats are still
) What was learned and what changes are needed? Are there issues with the learning Act (A) process? If another PDSA cycle is needed, go back to Plan (P)Project DetailsFeedback received from a previous research study, where a process simulator was used,indicated that students were interested in real processes to work on and improve [19]. For timeconstraints and lack of manufacturing companies close to campus, opportunities for projectswere identified in laboratories utilized for teaching plastics technology as well as additivemanufacturing using a 3-D Printer. These projects were a part of a new senior engineering courseon
his research, he has devised a few teaching activities, including Lab-in-Class and Lab-in-a-Bag. He has received several teaching awards for his effort in developing the new activities. c American Society for Engineering Education, 2019 Preparing Undergraduate Engineering Students for their Profession – A Novel Curricular Approach Joel R. Howell1, Christos S. Ferekides1, Wilfrido A. Moreno1, Thomas M. Weller2, Arash Takshi1 1 University of South Florida, Tampa, FL 2 Oregon State University, Corvallis, ORAbstractThis Work-In-Progress (WIP) paper describes a
known that Active Learning methodologies involve the students in their own learningand there is no doubt about their effectiveness in sharing knowledge with today’s students.Actually, undergraduate students taking traditional lecturing-based courses are 1.5 times morelikely to fail than those enrolled in courses where active learning methodologies are implemented[1]. Thus, our university has centered its attention on investigating, applying, improving anddesigning new active learning methodologies. Examples of such methodologies are: The MathOperatory Skills Laboratory (MOSL), introduced in [2], as a remedial mathematics course forfreshmen engineering students; and, the Guided-Lecture Team Based Learning (GL-TBL)targeted to teach mathematics
minimum, core essentials in order to allow time for depth of exploration and engagement in labs and projects. As a result of trying to cover too many topics, in- class demonstrations and labs were only offered periodically due to time constraints, even though they were found to be extremely worthwhile. ● There is disparity among personnel regarding preparedness to teach an integrated lab course as well as the depth of content required. Faculty buy-in of laboratory-style teaching is a must. The recommendations for future iterations of this and subsequent courses in this series involve setting the stage for a laboratory-style course both through the design of
School of Engineering Educa- tion at Purdue University. His research interests include creating systems for sustainable improvement in engineering education, conceptual change and development in engineering students, and change in fac- ulty beliefs about teaching and learning. He serves as the Publications Chair for the ASEE Educational Research and Methods Division.Dr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Teaching Associate Professor and Director of Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental