Biomedical Engineering of the University of Miami were directs the Biomedical Design and Instrumentation Laboratory and teaches Se- nior/Master Design Project, Biomedical Instrumentation, Microcomputer based medical instrumentation and Bio-signal processing. He mentors multidisciplinary teams of students, mainly interested in the de- sign of novel bio-electric devices. In his teams he integrates students at different academic levels from undergraduate to PhD. In research he is affiliated with the Neurosensory Laboratory where he performs research in audiology, ophthalmology, anesthesia and neurology. Collaborating with researchers of the Miller School of Medicine, he develops and validates novel Electrophysiological
) ≠ Ability to find, analyze and solve a problem. Page 14.280.3 ≠ Understanding of the design process and how it fits into the overall business processes ≠ A basic understanding business processes and entrepreneurial ventures ≠ Strong Laboratory skills ≠ Ability to communicate (both written and verbal) ≠ Understanding of regulations and ethics for biomedical situations ≠ Leadership and teamwork skills ≠ Willingness to continue to learnFacultyWith regard to the recommendation by the Engineer of 2020 report regarding faculty andstudents being the primary actors in the learning process(2), it has always been an underlyingbelief of
describe the first offering of Introduction to Tissue CultureLaboratory Techniques. In this lab makeover, we significantly changed expectations, lab format,lecture content, lab protocols, and grading policies in order to engage novice students. Theinstructor observed striking improvements in overall student engagement, mastery of techniques,preparedness, and confidence in lab performance. These observations are supported by studentfeedback in written reflections, informal communication, and end-of-course student surveys.Briefly, the course learning objectives include: 1) Demonstrate ability to work safely with animal cells and mastery of aseptic technique 2) Perform laboratory techniques essential for establishing and maintaining cell lines
AC 2008-1121: INTRAMURAL RESEARCH INTERNSHIP: A REQUIREMENT OFTHE UNDERGRADUATE BIOENGINEERING CURRICULUM AT THEUNIVERSITY OF PITTSBURGHSteven Abramowitch, University of Pittsburgh Dr. Abramowitch is an Assistant Professor of Bioengineering at the Swanson School of Engineering at the University of Pittsburgh. He received his B.S. (1998) in Applied Mathematics and Ph.D. (2004) in Bioengineering from the University of Pittsburgh. Currently, he serves as the Director of the Tissue Mechanics laboratory in the Musculoskeletal Research Center. The primary goal of the Tissue Mechanics Laboratory is to understand and enhance ligament healing utilizing functional tissue engineering approaches, and
traditional engineering coursewith roots in Electrical Engineering that is a required course in many biomedical engineeringprograms. We designed a BME curriculum that includes a Linear Systems course as a co-requisite with a Physiology for Biomedical Engineers course. Students analyze data collected inthe laboratory portion of the physiology course as part of Linear Systems course assignments.We aligned the topics to explicitly incorporate two physiology experiments that facilitate a jointlearning experience. In the first experiment, students collect EEG data in the physiologylaboratory and analyze the frequency content of that data in Linear Systems. In the secondexperiment, they study speech production in the physiology laboratory and perform a
AC 2010-1038: EARLY CAREER BIOENGINEERING RESEARCH EXPERIENCEFOR UNDERGRADUATESRebecca Willits, Saint Louis University Rebecca Kuntz Willits is an associate professor of Biomedical Engineering at Saint Louis University and has developed courses in Transport Phenomena, Biotransport, Drug Delivery, Tissue Engineering, and Design of Laboratory Experiments. She was the 2009 Director of BE@SLU, an NSF-sponsored REU in Bioengineering.David Barnett, Saint Louis University David Barnett is the Chairperson of the Department of Biomedical Engineering at Saint Louis University, as well as the Director of the 2010 BE@SLU program
Page 12.1483.5 assessed through the assignment of homework problems using Excel® Spreadsheets and exam questions. Exam results on this subject, for the three students, were as follws: 1-20/20, 1-18/20 and 1-8/20%.CO-2: Understand error analysis and how to report uncertaintiesThis course outcome is implemented through the building of a DC voltmeter, then calibrating it, and writing aspecification sheet that includes error and uncertainty analysis. The experimental design intentionally introducedreproducibility, linearity and accuracy errors. The results of this error analysis was evaluated through ahomework and laboratory assignments. Laboratory exercises included measuring the speed of sound in the field(1-18/25, 2-24/25), measuring the speed
Paper ID #18138Bioengineering Experience for High School Science TeachersMr. Sam Dreyer, University of Illinois at Chicago Sam Dreyer is a Masters student researching ocular therapeutic hypothermia and Brain-Computer Inter- faces. He is also passionate about engineering education, teaching high school students and teachers about bioengineering concepts and methods.Dr. Miiri Kotche, University of Illinois at Chicago Miiri Kotche is a Clinical Associate Professor of Bioengineering at the University of Illinois at Chicago, and currently serves as Director of the Medical Accelerator for Devices Laboratory (MAD Lab) at
D. Sweeney Department of Bioengineering, U.A. Whitaker School of Engineering Florida Gulf Coast UniversityAbstr actTeaching a first course on electrical/electronic circuits to bioengineering students with noprevious background poses a significant challenge. An integrated lecture-lab approach is beingdeveloped at Florida Gulf Coast University with the incorporation of the ELVIS (EducationalLaboratory Virtual Instrumentation Suite) workstation from National Instruments and its virtualinstrumentation package, in addition to the traditional set of instruments. The initial experienceindicates that integrating laboratory practice and lecture can increase student motivation andinterest, particularly
Paper ID #10049Works in Progress: Generating Interest in Biomedical Engineering throughExploration of the Design ProcessDr. Marcia A. Pool, University of Illinois at Urbana Champaign At the time of this work, Marcia Pool was an Instructional Laboratory Coordinator in the Weldon School of Biomedical Engineering at Purdue University; she is now a Lecturer at the University of Illinois at Urbana Champaign. At Purdue, she oversaw and assessed junior level laboratories, bioinstrumentation and biotransport, developed and implemented sophomore and junior professional development courses, and taught and mentored students in the
writtenreports about the design process, prepare group oral presentations, utilize electrical and mechani-cal computer-aided design, and create instrumentation software in LabVIEW. These, in turn, relyon students having achieved a set of learning objectives related to electronic circuit theory, oper-ational amplifiers, and electronic components.BIOMENG 241 is organized with two lectures per week of one hour each, plus one two-hourlaboratory session per week. Lectures cover the design process, passive electronics, operationalamplifiers, filters, digital sampling, component selection, ethics, and safety. Laboratories coverbrainstorming, electronics instrumentation, soldering, operational amplifier circuits, aliasing, andquantization. Project work is
literature regarding the biomedical knowledge base and put those ideas to work to solve a problem. 3. Create a healthy balance in your thinking, between creating novel solution ideas and maintaining skepticism about the solutions they provide. 4. You should be able to communicate your approach and findings concisely and clearly, preparing you to play a key role is solving more complex problems that require Page 23.1384.2 collaboration after you graduate.These overarching aims were assessed with homeworks, laboratory reports, a finalcomprehensive exam, a final report presentation, and final report. In each case rubric was usedto
take sevensemesters of required team-based design courses. Historically, students would develop technicalskills as needed based on their project. Through engagement with our constituents we developeda more direct instructional approach at delivering essential engineering tools early in thecurriculum. We previously reported on the creation of this new required second semestersophomore lecture and laboratory course with a guided design project: BME 201, “BiomedicalEngineering Fundamentals and Design” (to replace one of the client-based experiences). Sincethen, this course has evolved to cohesively combine all three components into modules thatrepresent the breadth of BME, including: electronics, programing (MATLAB, LabVIEW, andArduino
learning situations that are familiar to students as the context for virtual science, engineering and technology investigations. He also pro- posed and implemented the pioneering concept of integrated adjustable virtual laboratories. To facilitate these methodologies for academic education, corporate and military training, his company developed new ground-breaking e-learning solutions, as well as relevant assessment and authoring tools. Dr. Cherner holds an MS in Experimental Physics, and Ph.D. in Physics and Materials Science. He published over 90 papers in national and international journals and made dozens presentations at various national and international conferences and workshops. Dr. Cherner has served as a
Paper ID #12005Survey of U.S. Biomechanics InstructionProf. Anton E Bowden, Brigham Young University Anton E. Bowden is an Associate Professor of Mechanical Engineering and director of the BYU Applied Biomechanics Engineering Laboratory at Brigham Young University. His background and research inter- ests are in spinal biomechanics, biomedical device design, computational biomechanics, and recently in engineering education. He received his PhD in Bioengineering from University of Utah and his BS in Me- chanical Engineering from Utah State University. He is a licensed professional engineer and a recipient of a National
ProgramAbstract Research experiences for undergraduates have increased in availability at universities andgovernment laboratories throughout the nation. Government agencies, universities and privatedonors support these activities with a variety of expectations, including providing a more skilledworkforce, creating a greater emphasis on graduate education and increased retention of studentsin highly technical fields. While the value of these programs has been well-established, there is apaucity of empirically-based research on the various models and practices of these experiencesthat have the greatest impact on the students. The focus of this study was a National ScienceFoundation funded Research Experience for Undergraduate (REU) program at a 4
teaching responsibilities comprises the biomedical engineering laboratory courses. His previous research interests included small- molecule organic synthesis, intelligent hydrogels for controlled drug delivery, pulmonary drug delivery, and materials characterization.Mr. William Liechty, University of Texas, Austin William B. Liechty is a NSF Graduate Research Fellow in the Department of Chemical Engineering at the University of Texas, Austin, conducting research under the direction of Prof. Nicholas Peppas. He re- ceived a B.S.E. in chemical engineering from the University of Iowa in 2007 and studied at the University of Cambridge as a Gates Scholar until 2008. His research interests include responsive materials, RNA
training in aguided fashion early in the curriculum. In order to effectively teach these important professional, technical, and life-long skills, wedeveloped a new sophomore-level lecture/laboratory course, BME 201, “BiomedicalEngineering Fundamentals and Design.” We offered it for the first time in Spring 2012, and ithas been taught twice so far. The weekly lecture focuses directly on professional skills, andintroduces students to the department’s five areas of study (bioinstrumentation, biomedicalimaging, biomechanics, biomaterials/cellular/tissue engineering, and healthcare systems) throughlectures by faculty in those areas. These lectures were recorded during the first offering so thatthe videos can be viewed outside of class, and the
engineering.Students apply engineering design principles through completion of a team design project with Page 11.401.2realistic constraints. The course serves as the entry point for the four-quarter sequence in whichstudents undertake and complete their capstone design project.Principles of Biomedical Design is a two-credit, required course for all biomedical engineeringstudents in the spring quarter of their junior year. The course meets twice a week, with one 50-minute lecture session and one 160-minute laboratory session. A unique feature of this course isits overlap with the final quarter of the senior design sequence. Half of the laboratory exercisesin
field of biomedical engineering and typical career paths for BME students on Monday.Other lectures included training on laboratory safety related to biological, chemical, and physicalhazards as well as an introduction to the laboratory experiences. Finally, a local surgeon thatworks with the BME faculty on design of breast surgery devices gave a lecture on hisexperiences in the medical field. Evening activities included a scavenger hunt, design of balloonpowered vehicles, and the viewing of the movie “The Island” with a subsequent discussion ofmedical ethics and human cloning. The program culminated with an awards dinner and gamenight in the campus center. A brief schedule of the program is shown in Table 1.Laboratory experiencesThe overarching
engineering technical electives, one participated in a capstone designproject, and nearly all students conducted research in a faculty laboratory; no studentsparticipated in an engineering service project, industry internship, or formal clinical rotation asyet.The program supports eight (two at each of the four institutions out of country) studentexchanges per institution, 48 student exchanges total over the 4 year project duration. Theprogram is in its third year; none of the partner institutions have met this target allocation as yet.This may be attributed, at least in part, to the delayed completion of the MOU, personnelchanges affecting incoming student placement as well as recruitment of outgoing students,curriculum revisions affecting
AC 2007-1121: A FOUR-YEAR PROGRESSION OF OPEN-ENDED PROJECTS INAN UNDERGRADUATE BIOMEDICAL ENGINEERING CURRICULUMDaniel Cavanagh, Bucknell UniversityJoseph Tranquillo, Bucknell UniversityDonna Ebenstein, Bucknell University Page 12.40.1© American Society for Engineering Education, 2007 A Four Year Progression of Open-Ended Projects in an Undergraduate Biomedical Engineering CurriculumAbstractOne of the important instructional goals of our Biomedical Engineering Program is to providestudents with the opportunity to develop strong, independent project skills in both the classroomand the laboratory. To accomplish this goal, the Program has developed a
BioEngineering Department at the authors’ institution, the University ofIllinois at Chicago (UIC). Special emphasis will be placed on the laboratory component,since this is in certain ways the most important, yet the most challenging.Training neural engineersMany undergraduate bioengineering programs require students to select an area in which tofocus their coursework during their latter undergraduate years. This so-called “tracking” ismeant to give students some depth within the very broad bioengineering field. It has beenargued that depth helps students to compete more successfully for jobs, but exploring asubject area in depth is also a beneficial intellectual exercise in its own right.It is difficult to determine how many bioengineering programs now
nanomedicine, self-assembly, tribiology, and nanobiomaterialsto learn first-hand the engineering and design challenges. The course culminated with researchor design proposals and oral presentations that addressed specific engineering/design issuesfacing nanobiotechnology and/or nanomedicine. The assessment also included an exam (onlyfirst offering), laboratory write-ups, reading of research journal articles and analysis, and anessay on ethical/societal implications of nanotechnology, and summative questionnaire. Thecourse exposed students to cross-disciplinary intersections that occur between biomedicalengineering, materials science, chemistry, physics, and biology when working at the nanoscale.We will also discuss the lessons learned and changes made
) research.Course BackgroundThe research project was integrated within BME 432 – Lab on a Chip, an upper-level electivecourse at Western New England University that introduces students to the theory and applicationof microfluidic systems in medicine and biology. In the first iteration of the course-basedlearning model, a standard lecture and laboratory approach was utilized to follow a logicalprogression from core concepts to applications of this emerging technical field (Table 1). Oncesufficient course material had been covered, a laboratory project was implemented that allowedstudents to design and fabricate a microfluidic mixer, which was one of the concepts introducedin the microfluidics section of the course. While the original laboratory project
muscle forces needed to match the model markertrajectories of the upper and lower arm to those measured experimentally. The students wereasked to produce a lab report in the form of a journal article. In the discussion they were asked toaddress specific questions of anatomy and physiology of the movement under study which couldbe directly assessed using a rubric.A separate experiment on a different student cohort tested if the same knowledge could beacquired using haptic feedback. Students completed a pre-laboratory assignment in which theywrote a custom Matlab (MathWorksInc.,Natick,MA) code for post-processing of the data.Second, a robotic manipulator was utilized to measure sensorimotor function during a guidedreaching task. To measure
videos, by the students reading short articles, visiting websites, andother modes of content delivery. Application of the lecture content is done in the classroomusually in small groups in the form of problem solving, laboratory activities (virtual or physical),group learning etc. with guidance by the instructor. The flipped classroom paradigm was firstintroduced 2007 for teaching high school science (1, 2) but has since attracted science andengineering instructors in universities and colleges (3, 4). Among its main benefits, the flippedclassroom enables students to receive the most support when they are working on the mostcognitively demanding tasks. The flipped classroom increases interaction between instructor andstudent and between student
to acontinued funding commitment which can survive the departure of any critical individual oneither side of the partnership.MEDITEC (Medical Engineering Development and Integrated Technology EnhancementConsortium) is an industry/academic partnership that matches multidisciplinary teams ofundergraduate and masters-level engineering students with the project needs of biomedicaldevice developers. Industry provides the project topics and technical mentors, while projects areself-selected by students based upon a match with their background skills and educational goals.Reconfigurable project space, with physical isolation between the confidential projects ofcompeting companies, is provided on campus. This physical laboratory serves as the focus
Department at Wash- ington University in St. Louis. She received her B.S. degree in electrical engineering from the University of Illinois, Urbana-Champaign, and her M.S. degree in biomedical engineering from Washington Univer- sity in St. Louis. Prior to her current position, she worked as an instrumentation and controls engineer for Monsanto, Co. Page 25.816.1 c American Society for Engineering Education, 2012 Integration of a Computational Lab Sequence Into a Junior-Level Quantitative Physiology CourseAbstractWe have built a computational laboratory sequence
Page 25.417.6online and library resources, submission of an outline and annotated bibliography for review andfeedback, peer review of first drafts, formative feedback on the revised draft, and finally the finaldraft of the report and an oral presentation to the rest of the class. The second major componentis a team-based self-directed laboratory project. Student teams ideate around laboratory projects,then draft a research proposal including a description, timeline, and budget. The project isscheduled for approximately one month, and teams use both in- and out-of-class time to work onthe project (12 hrs/week). Benchside mentorship is provided by both the instructor and bylaboratory assistants, normally students with advanced laboratory skills