Embedded Processor for Remote Laboratory DevelopmentAbstract: This paper describes the design, development and implementation of a remotelaboratory facility utilizing an embedded processor system to reduce the development cost aswell as minimize the implementation time and maintenance overhead. Two experimentalprocesses are reported within this paper. One is the remote programming of a Raspberry Pito control and monitor a number of sensors and actuators, and the other is to control acoupled tank system to control the fluid levels in the tanks. Both experimental processes aresupported by a user friendly graphical user interface (GUI) as well as real-time video feed.Students can develop their own controller designs and upload them
Paper ID #18757A Microcontroller-based DSP Laboratory CurriculumDr. Ying Lin, Western Washington University Ying Lin has been with the faculty of Engineering and Design Department at Western Washington Uni- versity since September 2010 after she taught for two years at SUNY, New Platz. She received her MS in Applied Statistics and Ph.D. in Electrical Engineering from Syracuse University, NY, respectively. Her teaching interests include first-year Intro to Electrical Engineering, circuit analysis sequence, and upper-division communication systems and digital Signal Processing courses. Her research areas focus on
Paper ID #30664Definition of a Smart Laboratory Learning Object compatible with OnlineLaboratory Management SystemsDr. Luis Felipe Zapata-Rivera, Embry-Riddle Aeronautical University Felipe Zapata-Rivera got his PhD in Computer Engineering from Florida Atlantic University, in the past worked as a researcher assistant in the group of educational computer in the EAFIT University in Medellin, Colombia. His work area is specifically the online laboratories and assessment systems, he conducted his undergraduate studies in systems engineering and completed his masters in Engineering at EAFIT University. He has developed systems
AC 2008-17: UNDERGRADUATE ENGINEERS FOR CURRICULUM ANDLABORATORY EQUIPMENT DEVELOPMENT: A FREESCALE S12MICROCONTROLLER LABORATORY TRAINERSteven Barrett, University of Wyoming Steven F. Barrett received the BS Electronic Engineering Technology from the University of Nebraska at Omaha in 1979, the M.E.E.E. from the University of Idaho at Moscow in 1986, and the Ph.D. from The University of Texas at Austin in 1993. He was formally an active duty faculty member with the United States Air Force Academy, Colorado and is now an Associate Professor of Electrical and Computer Engineering, University of Wyoming. He is a member of IEEE (senior) and Tau Beta Pi (chief faculty advisor). His research
AC 2008-1827: AN "EIA" APPROACH TO SUPPORT LABORATORY LEARNINGENVIRONMENTSNabil Lehlou, University of ArkansasNebil Buyurgan, University of ArkansasJustin Chimka, University of Arkansas Page 13.169.1© American Society for Engineering Education, 2008 An EiA Approach to Support Laboratory Learning EnvironmentsAbstractWhen developing or expanding hands-on laboratory environments that rely on technology, onefaces various challenges. Such inconvenience varies from expensive technological renovations tothe reliance of devices on human intervention, to the non-standardized communication betweennetworked objects that use different native programming languages. To overcome these
Technology Bldg, East Carolina University, Greenville, NC 27858; email: pickardj@ecu.edu; phone: 252-328-9646. Page 14.415.1© American Society for Engineering Education, 2009 Design Considerations for Virtual Classroom and Laboratory EnvironmentsAbstractWith the ever-increasing demand for distance education one of the key challenges facing facultyis not only delivering effective instruction through both lecture-style and laboratory means, butalso giving students an environment with a sense of presence. The key challenge here is toimprove on the distance student’s capabilities for
Paper ID #21417Design of a Virtual Laboratory for Automation ControlMr. Zelin Zhu Zelin Zhu is a Software Development Engineer at ESRI in Redlands, California, USA. He holds dual master’s degrees in Electrical and Computer Engineering, and Modeling, Simulation and Visualization Engineering respectively from Old Dominion University and a bachelor’s degree in Electrical Engineer- ing and Automation from Nanjing University of Posts and Telecommunications. He is the first generation Microsoft HoloLens developer. His research interests include virtual reality and mobile application de- velopment.Prof. Yuzhong Shen, Old
Michael Golub is the Academic Laboratory Supervisor for the Mechanical Engineering department at IUPUI. He is an associate faculty at the same school, and has taught at several other colleges. He has conducted research related to Arctic Electric Vehicles and 3D printed plastics and metals. He participated and advised several student academic competition teams for several years. His team won 1st place in the 2012 SAE Clean Snowmobile Challenge. He has two masters degrees: one M.S. in Mechanical Engineering and an M.F.A. in Television Production. He also has three B.S. degrees in Liberal Arts, Mechanical Engineering, and Sustainable Energy. c American Society for Engineering Education, 2018
Paper ID #12101Usability Evaluation of a Virtual Educational Laboratory PlatformYizhe Chang, Stevens Institute of TechnologyDr. El-Sayed S. Aziz, Stevens Institute of Technology (SIT) Dr. El-Sayed Aziz is an associate professor in the Production Engineering and Mechanical Design De- partment at Faculty of Engineering, Mansoura University, Egypt. Currently, he is a research scientist at Stevens Institute of Technology, Hoboken, New Jersey, USA. He received B.S. and M.S. Degrees in Mechanical Engineering from Mansoura University, Egypt, in 1991 and Ph.D. in Mechanical Engineering from Stevens Institute of Technology in 2003
2006-1382: PEER ASSESSMENT METHODOLOGIES FOR ALABORATORY-BASED COURSERathika Rajaravivarma, Central CT State University Page 11.987.1© American Society for Engineering Education, 2006Peer Assessment Methodologies for a Laboratory-Based CourseAbstractAdvances in technology and the explosive growth of the Internet have called fornew ways of learning environment. The content delivery is no longer the passiveapproach of lecture emanating from the teacher to the student. It is imperativethat computer networking courses taught at the undergraduate level containadequate hands-on implementation based projects and experiments in order tobetter train students. The computing curricula 2001 (CC2001
2006-1540: IMMERSIVE COLLABORATIVE LABORATORY SIMULATIONSUSING A GAMING ENGINEChenghung Chang, Stevens Institute of Technology Mr. Chenghung Paul Chang is currently a Research Assistant at Stevens Institute of Technology and a Ph.D. candidate in Mechanical Engineering. He obtained his Master’s Degree in Mechanical Engineering from Stevens Institute of Technology in 2005. His research includes alternatives to traditional methods of administering laboratory experiments, including remote experiments and virtual experimental simulations.Dror Kodman, Stevens Institute of Technology Mr. Dror Kodman received a Bachelor’s degree in Architecture from New Jersey Institute of Technology in 2001. Currently
AC 2011-2437: A GAME-BASED LABORATORY FOR GEAR DESIGNYizhe Chang, Stevens Institute of TechnologyEl-Sayed Aziz, Stevens Institute of Technology Dr. El-Sayed Aziz holds a faculty position as assistant professor in the Production Engineering and Mechanical Design Department at Faculty of Engineering, Mansoura University, Egypt. Currently, he is working as research scientist at Stevens Institute of Technology, Hoboken, New Jersey, USA. He received B.S. and M.S. degrees in Mechanical Engineering from Mansoura University, Egypt, in 1991 and a Ph.D. in Mechanical Engineering from Stevens Institute of Technology in 2003. His research interests include knowledge-based engineering systems, computer-integrated design and
AC 2009-1241: DISASTER PLANNING FOR A LARGE METROPOLITAN CITYUSING TRANSIMS SOFTWARELok PASUPULETI, Northern Illinois UniversityOmar Ghrayeb, Northern Illinois UniversityClifford Mirman, Northern Illinois UniversityHubert Ley, Argonne National LaboratoryYoung Park, Argonne National Laboratory Page 14.494.1© American Society for Engineering Education, 2009Disaster Planning for a Large Metropolitan City Using TRANSIMS SoftwareAbstractOver the past decade the United States has endured many disasters, both man made and due tothe forces of nature. In each case, leadership in the public and private sectors learn that moreneeds to be done to ensure continuity of life and economy
, students learn that their basic knowledge can be carried over to other devices andsystems. This paper describes a second semester sophomore laboratory project todesign and build an autonomous robot vehicle capable of navigating an outsidearea the size of a small parking lot by guidance from a GPS sensor. The roboticvehicles normally use the frame of remote controlled cars. The students aredivided into teams of 3 to 4 members. The teams compete at the end of thesemester. The winner is the vehicle and completes the parking lot drive in theshortest time.II. Project Laboratories The laboratory structure in the ECE department at Texas Tech University issomewhat different than most university laboratories.1-8 There are five, three hour
Paper ID #16463Software Defined Radio Based Laboratories in Undergraduate Computer Net-working CoursesDr. Deng Cao, Central State University Dr. Deng Cao received his Ph.D in Computer Science from West Virginia University in 2013. He earned two master degrees in Statistics and Physics from West Virginia University, and his bachelor degree in Physics from Hunan Normal University in China. Dr. Cao joined Central State University in 2013 and currently serves as an assistant professor in the department of Mathematics and Computer Science. His re- search interests include advanced biometrics, computer vision, pattern recognition
Paper ID #15677WORK IN PROGRESS: An Integrated DSP and Embedded MicrocontrollerLaboratory CurriculumProf. Todd D. Morton, Western Washington University Todd Morton has been teaching the upper level embedded systems and senior project courses for West- ern Washington University’s Electrical Engineering and Electronics Engineering Technology program for 27 years. He is the author of the text ’Embedded Microcontrollers’, which covers assembly and C pro- gramming in small real-time embedded systems and has worked as a design engineer at Physio Control Corporation and at NASA’s Jet Propulsion Laboratory as an ASEE-NASA Summer
Committee on Multimedia Communications. His research has been supported by the National Science Foundation, Air Force Office of Scientific Research, Air Force Research Laboratory, Office of Naval Research, and NASA. His work on software defined radio implementation of cognitive radio won the Best Demo Award at IEEE Globecom 2010.Prof. Bin Wang, Wright State University Prof. Bin Wang earned his Ph.D. from the Ohio State University in 2000. He joined the Wright State University in September 2000, where he is currently full professor of computer science and engineer- ing. His research interests include optical networks, real-time computing, mobile and wireless networks, cognitive radio networks, trust and information
2006-1421: INTERNET-BASED PHYSICAL EXPERIMENTS: APPLICATIONWITHIN A LABORATORY COURSEAbul Azad, Northern Illinois University DR. ABUL AZAD is an Assistant Professor with the Department of Technology of Northern Illinois University, USA since July 2001. He completed his PhD in 1994 from the University of Sheffield, UK, which was sponsored by the Commonwealth Scholarship, UK. Subsequently he worked with the University of Sheffield and University of Portsmouth (UK) with various capacities. His research and teaching interests include Internet-based physical experiments, mechatronics, real-time computer control, adaptive/intelligent control, and mobile robotics. Dr. Azad has over 75 referred
Paper ID #8992Developing Control Experiments as a part of a Remote Laboratory FacilityDr. Abul K. M. Azad, Northern Illinois University Abul K. M. Azad is a Professor with the Technology Department of Northern Illinois University. He has a Ph.D. in Control and Systems Engineering and M.Sc. and B.Sc. in Electronics Engineering. He has been in academics for 15+ years, and his research interests include remote laboratories, mechatronic systems, mobile robotics, and educational research. In these areas, Dr. Azad has over 100 refereed journal and conference papers, edited books, and book chapters. So far, he has attracted
proportional-derivative(PD) compensator. From this procedure, design procedures for unified notation lead,proportional-integral (PI), proportional-integral–derivative (PID), and PI-lead compensator weredeveloped. With this proposed approach, students can concentrate on the larger control systemdesign issues, such as compensator selection and closed-loop performance, rather than theintricacies of a particular design procedure.Once students learn the unified design process discussed above, it is important that they get anopportunity to apply it to design and laboratory projects. Most real life examples require designiterations. The Graphical User Interface (GUI) developed in this paper not only makes thisfeasible, but also makes this an excellent
laboratory settings,as well as in independent projects. The toolkit is being used with students during the spring 2008semester. Preliminary results will be available for the 2008 ASEE convention and alldocumentation for the toolkit is freely available on the project website1.IntroductionOptical fiber technology provides very high quality data communications over great distances.With the growing and now common use of optical fiber in industry and high-end consumerelectronics, the use of optical fiber should be more widely taught. For this purpose we aredeveloping an educational optical fiber data communications toolkit that provides students withthe means to investigate the physical layer in such a network. We first used the toolkit duringthe spring
is defined in the traditional robotics manner). The first and last linksconnect to exactly one joint. No active appendages of any sort were allowed, although the linksthemselves could be complex.To ensure that the students focused their designs toward effective locomotion, the worm robotsare required to pull behind them a ‘chariot,’ which contains the battery and processor. Therobots were thus required to generate good traction and ground force, as opposed to simplygenerating forward motion. The exercise took place over one week, during which there werefour hours of laboratory time.Our prior experience suggested that the motivation of the students would increase significantlywere the design cast as a competition. As such, the demonstration
AC 2007-1038: COMPARING THE WALSH DOMAIN TO THE FOURIERDOMAIN WITH A LABVIEW-BASED COMMUNICATION SYSTEMS TOOLKITMurat Tanyel, Geneva College Murat Tanyel is a professor of engineering at Geneva College. He teaches upper level electrical engineering courses. Prior to Geneva College, Dr. Tanyel taught at Dordt College, Sioux Center, IA from Aug. 1995 to Aug. 2003. Prior to 1995, he was at Drexel University, Philadelphia, PA where he worked for the Enhanced Educational Experience for Engineering Students (E4) project, setting up and teaching laboratory and hands-on computer experiments for engineering freshmen and sophomores. For one semester, he was also a visiting professor at the United Arab
6-axes of inertial sensor data, GPS, a real time clock (RTC) for data stamping, magneticcompass, and temperature sensing, making it an ideal circuit board for embedded applications.The system integrates analog and digital sensors, serial communication interfaces and protocols,and a user command interface.In this work we outline the development of a digital signal processor-based navigation systemand describe its capabilities. We also describe its application in student work, particularly as thebasis of laboratory experiments in a course on autonomous vehicles.System DescriptionOur research combines low cost readily available components to provide a sensor system capableof improving embedded computing applications and enhancing laboratory
laboratory experiments, where students get hands-on experience with a variety of signals such as BPSK, QPSK, and QAM. Any undergraduate labwith workbenches outfitted with standard PC and data acquisition equipment will be able tomake use of this novel VSA.1. IntroductionMany universities offer a laboratory component as part their introductory digital and analogcommunication course. In traditional undergraduate teaching laboratory environments, manycommunication topics are difficult to convey because of their complexity in implementation. Inthe first reference1, a framework for meaningful hands-on undergraduate communicationlaboratories was introduced using a set of LabVIEW-based exercises that interact with computer-controlled industry-standard test
benefits to thosestudents by providing them opportunities to work together with others to meet long-term goals.This paper will discuss how one such laboratory, the Virtual Reality Undergraduate ProjectLaboratory, VRUPL, serves education on two fronts by developing large-scale virtual realityeducational simulations in an undergraduate research laboratory, and distributes the resultingproducts free of charge.PEDAGOGICAL BACKGROUNDThe work presented in this paper is based upon three important pedagogical foundations: 1. Dale Edgar’s Cone of Learning: Students retain more knowledge for a longer period of time when the information is presented through multiple delivery channels, particularly when one or more of those channels involves