Paper ID #18757A Microcontroller-based DSP Laboratory CurriculumDr. Ying Lin, Western Washington University Ying Lin has been with the faculty of Engineering and Design Department at Western Washington Uni- versity since September 2010 after she taught for two years at SUNY, New Platz. She received her MS in Applied Statistics and Ph.D. in Electrical Engineering from Syracuse University, NY, respectively. Her teaching interests include first-year Intro to Electrical Engineering, circuit analysis sequence, and upper-division communication systems and digital Signal Processing courses. Her research areas focus on
Paper ID #30664Definition of a Smart Laboratory Learning Object compatible with OnlineLaboratory Management SystemsDr. Luis Felipe Zapata-Rivera, Embry-Riddle Aeronautical University Felipe Zapata-Rivera got his PhD in Computer Engineering from Florida Atlantic University, in the past worked as a researcher assistant in the group of educational computer in the EAFIT University in Medellin, Colombia. His work area is specifically the online laboratories and assessment systems, he conducted his undergraduate studies in systems engineering and completed his masters in Engineering at EAFIT University. He has developed systems
Paper ID #16463Software Defined Radio Based Laboratories in Undergraduate Computer Net-working CoursesDr. Deng Cao, Central State University Dr. Deng Cao received his Ph.D in Computer Science from West Virginia University in 2013. He earned two master degrees in Statistics and Physics from West Virginia University, and his bachelor degree in Physics from Hunan Normal University in China. Dr. Cao joined Central State University in 2013 and currently serves as an assistant professor in the department of Mathematics and Computer Science. His re- search interests include advanced biometrics, computer vision, pattern recognition
Paper ID #15677WORK IN PROGRESS: An Integrated DSP and Embedded MicrocontrollerLaboratory CurriculumProf. Todd D. Morton, Western Washington University Todd Morton has been teaching the upper level embedded systems and senior project courses for West- ern Washington University’s Electrical Engineering and Electronics Engineering Technology program for 27 years. He is the author of the text ’Embedded Microcontrollers’, which covers assembly and C pro- gramming in small real-time embedded systems and has worked as a design engineer at Physio Control Corporation and at NASA’s Jet Propulsion Laboratory as an ASEE-NASA Summer
assessment and has over 25 years in computer applications systems, manager, and educator. She is a past president in ATMAE (formerly NAIT). Dr. Tracey may be reached at tracey@ccsu.edu Page 26.1764.1 c American Society for Engineering Education, 2015 Work-in-Progress: Design and Development of a New Networking Information Technology Program and LaboratoryAbstractThis paper describes the ongoing development of a new Bachelor of Science in NetworkingInformation Technology (NIT) program. The balanced curriculum and laboratory of the programnot only
Paper ID #12702Work-in-Progress: Statistics Components in a Circuits Laboratory for ECESophomoresDr. Steve E. Watkins, Missouri University of Science & Technology DR. STEVE E. WATKINS is Professor of Electrical and Computer Engineering at Missouri University of Science and Technology, formerly the University of Missouri-Rolla. His interests include educational innovation. He is active in IEEE, HKN, SPIE, and ASEE including service as the 2009 Midwest Section Chair. His Ph.D. is from the University of Texas at Austin (1989). Contact: steve.e.watkins@ieee.orgDr. Theresa Mae Swift, Missouri University of Science &
research interests include computer graphics, visualization, serious games, signal and image processing, and mod- eling and simulation. Dr. Shen is currently an Associate Professor of the Department of Modeling, Sim- ulation, and Visualization Engineering and the Department of Electrical and Computer Engineering of Old Dominion University. He is also affiliated with Virginia Modeling, Analysis, and Simulation Center (VMASC). Dr. Shen is a Senior Member of IEEE. c American Society for Engineering Education, 2018 Implementation of a 3D Interactive Mobile App for Practicing Engineering Laboratory ExperimentAbstractPerforming laboratory experiment for off-campus and distance
Paper ID #14874A Virtual Laboratory System with Biometric Authentication and RemoteProctoring Based on Facial RecognitionMr. Zhou Zhang, Stevens Institute of Technology (School of Engineering and Science) Ph.D Candidate, Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, 07030. Email: zzhang11@stevens.eduMr. Mingshao Zhang, Stevens Institute of Technology (School of Engineering and Science) Mingshao Zhang is currently a Ph.D. student in Mechanical Engineering Department, Stevens Institute of Technology. Before joining Stevens, he received bachelor’s degrees from University of Science and Tech
) Page 26.1305.1 c American Society for Engineering Education, 2015 122th ASEE Annual Conference and Exposition Seattle, Washington, USA, June 14-17, 2015 Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C.Real-time 3D Reconstruction for Facilitating the Development of Game-based Virtual Laboratories Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. & Chassapis, C.AbstractGame-based virtual laboratories (GBVLs) represent an important implementation of virtual realityand are often considered to be simulations of real or artificial environments. They are based
Paper ID #11826Work-in-Progress. SiLaRR: Installing, deploying on Internet, and using aRobotics Laboratory Remote or in classroom with a few clicksDr. German Carro Fernandez P.E., UNED (Spanish University for Distance Education Dr. on Electrical Engineering and Industrial Control, Spanish University for Distance Education (UNED), Madrid, Spain, M. Sc. on Research on Electrical Engineering and Industrial Control (Specialty on Telematics Engineering), (UNED), Madrid, Spain, Bachelor’s Degree of Computer Systems Engineering Tech.(BCompSysEng) (UNED), Madrid, Spain, M. Sc. on Financial and Tax Administration, University of
employed at the end of an assignment,reflection questions encourage students to recognize what they learned, identify errors, andconsider different choices they might make in the future. Throughout an entire course, students’writings become an artifact of the changes and growth that accompany learning and provideinstructors with a rare insight into students’ learning processes.Our team is currently investigating how intermingled writing and coding can improve theprocess of learning to program. We have incorporated WTL strategies into introductorycomputer programming laboratory assignments and are comparing student work from thoselaboratories with student work from traditional laboratories. In order to minimize additionalwork for the WTL students
our course. Weinclude results and analysis from a student focus group, an anonymous exit survey, and includeour own observations.IntroductionIn the Fall 2011 semester when CPLDs were adopted for our introductory logic circuit course we Page 26.1252.2used an integrated approach, including the use of CAD tools and a hands-on experience with abreadboard. Our students first used discrete logic devices in two laboratory experiments and thena used CPLD module. Based on our research4 we found that in using this module, students caneasily identify the CPLD and with modest wiring they can construct circuits that they feel areboth satisfying and
robotics, automation, and nanotechnology engi- neering education and research. He is a licensed PE in Colorado and a member of ASEE, IEEE, and SME.Mr. Boyan LiMr. Benjamin MaestasMs. Katheryn Michelle Rothermal c American Society for Engineering Education, 2017 Dancing Humanoid Robots Lab Demonstration for the First Year Engineering StudentsAbstractThis work addresses an exciting humanoid robots laboratory demonstration developed bystudents (one senior and two master’s students) for the first year engineering students. The goalsof the demonstration are to entice the first year mechatronics engineering and industrialengineering students, and to motivate them to continue with their
Ohio State University in 1994 and 1997, respectively. He teaches both undergraduate and graduate courses related to mechanisms and machine dynamics, integrated product development, solid mechanics and plasticity theory, structural design and analysis, engineering analysis and finite element methods and has interests in remote laboratories, project-based learning and student learning assessment. His research is in the areas of remote sensing and control with applications to remote experimentation as well as modeling of microstructure changes in metal forming processes. He publishes regularly in peer-reviewed conference proceedings and scientific journals. At the 2006 ASEE Annual Conference and Exposition in Chicago
Paper ID #12018A Blocks-based Visual Environment to Teach Robot-Programming to K-12StudentsMr. Raghavender Goud yadagiri, NYU Polytechnic School of Engineering Raghavender Goud Yadagiri received his B.Tech degree in Electronics and Communication Engineering from JNTUH, Hyderabad, India, in 2011. After obtaining his B.Tech he worked as an Embedded As- sociate at Thinklabs Technosolutions Pvt. Ltd for two years. He is currently pursuing a M.S degree in Electrical and Computer Engineering with specialization in Computer Engineering. Raghavender con- ducts research in the Mechatronics and Controls Laboratory at NYU Polytechnic
Paper ID #15269WORK IN PROGRESS: Teaching Broadly-Applicable STEM Skills to HighSchool Sophomores Using Linux and SmartphonesProf. Daniel Brian Limbrick, North Carolina A&T State University Dr. Daniel Limbrick is an assistant professor in the Electrical and Computer Engineering Department at North Carolina Agricultural and Technical State University (NC A&T). As director of the Automated Design for Emerging Process Technologies (ADEPT) laboratory at NC A&T, he researches ways to make computers more reliable (i.e., radiation hardening) and scalable (e.g., three-dimensional integra- tion) through novel approaches
Department of Education.Dr. Yonghui Wang, Prairie View A&M University Dr. Yonghui Wang received his B.S. in Optoelectronics from Xidian University in 1993, his M.S. in electrical engineering from Beijing Polytechnic University in 1999; and his Ph.D. in computer engineering from Mississippi State University in 2003. From 1993 to 1996, he was a Research Engineer with the 41st Electrical Research Institute in Bengbu, China. From July 1999 to December 1999, he worked as an IT Specialist in IBM China, Beijing, China. From 2000 to 2003, he was a research assistant with the Visualization, Analysis, and Imaging Laboratory (VAIL), the GeoResources Institute (GRI), Mississippi State University. He is currently an Associate
beintegrated with lectures in the classroom or online, home projects, or when students want to tryout their own ideas, explore creative projects and ideas, using their own computers andassociated free computer-based-tools. Enriching students educational experiences, by providingopportunities inside and especially outside the traditional classroom and laboratory setting,enhance learning6. It is well supported by educational research that people retain 10% of whatthey hear but retain as much as 90% of what they “learn by doing” 6. The inexpensiveprogrammable hardware platforms enable students to quickly and easily experiment withadvanced technologies and build and test real-world, functional designs anytime and anywherestudents prefer to work7.Trying to
Human-Robot Interfaces 7 Robot Teams 8 HRI Applications – Museum Robots, Urban Search & Rescue 9 Final Project 10 Final Project 11 Final Project 12 Final Project 13 Final Project 14 Final Project 15 Final Project PresentationLabsThe students were typically given one week to complete the laboratory assignments using theArduino Robot. Each lab had a recitation, video demonstration, as well as skeleton code to helpthem get started. There were also Arduino Robot tutorial videos available on YouTube toreference12. A summary of the laboratory assignments is given in Table 3
mid-career employees and military personnel [4]. In order that the onlineeducation is at least equally effective (if not better) than face-to-face education in traditionalclassroom in all aspects such as academic quality, rigor and outcomes, appropriate teaching toolsmust be developed to suit the online teaching / learning media. In this regard, we believe the casestudy based education is one of the superior tools to deliver an equivalent laboratory experiencefor the online students!The process for developing case studies in described in section 2, a fully developed case study inthe domain of software testing is presented in Section 3, the instructions and teaching notes aregiven in Section 4, pedagogy and educational outcomes are discussed
these barriers, results showed that student CT improved overall. Although a statistical comparison showed that scores from the United States were higher than the scores from Kuwait, Kuwaiti females scored statistically higher than US females for CT abilities. Therefore, the investigation concludes that the STEM outreach program effectively promoted CT concepts in Kuwait.IntroductionThe objective of computational thinking (CT) is to increase computer science (CS)knowledge so that students can take what they learn in the classroom and laboratory andapply that knowledge to the modern workplace. Early CT exposure is critical for futureeducational outcomes because it helps students understand the connection between
Paper ID #31451Making the Move from C to Python With Mechanical Engineering StudentsDr. Burford J. Furman, San Jose State University Burford ”Buff” Furman has been on the faculty in the Department of Mechanical Engineering at San Jos´e State University since 1994. Prior to coming to SJSU, he worked at IBM in the Silicon Valley (San Jos´e, California) in the development of disk drive actuators and spindle motors. He has also worked as a consultant in the optomechanical and laboratory automation industries. His areas of teaching and research are primarily focused in mechatronics and solar-powered automated
Mingyu Lu received the B.S. and M.S. degrees in electrical engineering from Tsinghua University, Bei- jing, China, in 1995 and 1997 respectively, and the Ph.D. degree in electrical engineering from the Uni- versity of Illinois at Urbana-Champaign in 2002. From 2002 to 2005, he was a postdoctoral research associate at the Electromagnetics Laboratory in the University of Illinois at Urbana-Champaign. He was an assistant professor with the Department of Electrical Engineering, the University of Texas at Arlington from 2005 to 2012. He joined the Department of Electrical and Computer Engineering, West Virginia University Institute of Technology in 2012, and he is currently a professor. His current research inter- est
and two hours of laboratory per week. It has three majorobjectives. To improve students’ awareness of origin, current status and future directions of the IoT. To introduce students advanced technologies that enable the emerging IoT. To teach student to be capable of developing the basic MCU based IoT applications.Course learning outcomesIn the preparation of this course, we derive the following course learning outcomes under theabove three major objectives. 1. To demonstrate the knowledge of the evolution of the IoT. 1.1 To understand the origin and current status of the IoT in industry and academy 1.2 To understand the major technology challenges for the promise of the IoT 2. To demonstrate the knowledge of
help them to access them as a reference if there is a need.MethodologyThe VR-based framework design from a computer graphics perspective include the following: - A VR laboratory capable of delivering conceptual (theoretical) and practical CG training - Extensible VR modules designed to support immersion, navigation, and interaction - Coursework materials and laboratory exercises delivered in a paced manner to support face-to- face and distance-learning curriculumThe desktop VR is delivered through a simple website enhanced with a browser plug-in(illustrated in results section). The website’s content is arranged in a simple lesson format. Thelessons are arranged by increasing complexity and difficulty with the more essential
the needs of a mobile robotics course for students from multiple disciplines. This robot systemcan be programmed in JAVA, Python, Lua or C. It can also be programmed with various devicessuch as smartphones, tablets, or the traditional laptop computer. This mobile robotics coursecurrently uses off the shelf or slightly modified off the shelf robots to teach robotics. The initialresults will indicate that it is possible to use this modular platform in its various modes to createsome of the basic behaviors required for the laboratory assignments.IntroductionThis paper will present the design of a modular educational robotics platform to handle thedivergent skill sets of a multidisciplinary population in an introductory mobile robotics course
Paper ID #15724Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Envi-ronmentDr. Hazim A El-Mounayri, Indiana University Purdue University, Indianapolis Dr. El-Mounayri received his PhD in 1997 from McMaster University (in Canada) in Mechanical En- gineering, He is currently an associate professor of Mechanical Engineering, the co-director of the Ad- vanced Engineering and Manufacturing Laboratory (AEML) at IUPUI, and a senior scientist for manu- facturing applications at Advanced Science and Automation Corp. Also, he is a leading member of INDI (Integrated Nanosystems Development Institute). He co-developed
National Research Council postdoctoral researcher at the Air Force Research Laboratory, he joined the faculty of the Department of Materials Science and Engineering at Univ. Illinois, Urbana-Champaign in 2006. He was a TMS Young Leader International Scholar in 2008, received the NSF/CAREER award in 2009, the Xerox Award for Faculty Research at Illinois in 2011, the AIME Robert Lansing Hardy Award in 2014, co-chaired the 2011 Physical Metallurgy Gordon Research conference, and became a Willett Faculty Scholar at Illinois in 2015. His research focuses on defects in materials using density-functional theory, and novel techniques to understand problems in mechanical behavior and transport.Prof. Andrew Ferguson, University of
building client-based relationships with members of various educational learning communities.Participants and Course Context:The first set of participants are the students enrolled in the Programming 2 course, which is thesecond course in the introductory programming sequence at Ohio Northern University. Bothintroductory courses have three 50-minute lectures and one 175-minute laboratory sessionweekly during the semester, with the laboratory being used to reinforce just-covered lecturematerial. The first course uses C++ to provide experience in breaking problems down intofunctional units involving sequence, selection, and iteration; whereas the second course uses Javato explore the event-driven graphical user interface paradigm through
topologies and configuration, troubleshooting, and management of network devices such as routers and switches. YouTube is a video sharing website that can provide free educational tutorials and instructions on technical subject matter, where students can observe practical human-machine interaction to prepare for lectures and increase overall course performance on exams, assignments, and laboratory projects. Our goal was to compare the overall performance as well as the level of active class participation between two groups of the same computer networking course. We found that the group that used YouTube videos for pre-lecture preparation, consisting of 83 students, scored approximately 3% higher on exams but 5