subsequent analysis. The scriptedscenario11 for the first laboratory exercise was piloted in the fall 2007 semester in ‘ME 358Machine Dynamics and Mechanisms’, a junior level course for mechanical engineering majors atSIT.12 The laboratory exercise involved an industrial plant emulator13 designed for experimentswith different rotating bodies connected by a gear-belt mechanism. The experimental setupallowed students to determine the inertia of the device itself and of weights placed at variouslocations within the mechanism as well as to experiment with different gear ratios and beltstiffnesses.The purpose of this paper is to present another virtual experiment and asses its effectiveness as asupplementary learning tool for teaching the fundamental law
equipment and processes. In the course, studentsinvestigated control algorithm design in detail and also discussed sensors, transducers, andinterfacing. Students used state-of-the-art design and troubleshooting tools to apply controltheory to a series of hands on laboratory exercises. In response to the alumnus request a team was formed to make the course, laboratoryexercises and the physical laboratory a reality. The team consisted of the faculty membercurrently teaching the industrial controls course, a graduate student who would be developing thelaboratory exercises for his graduate project, the alumnus, the department staff engineer and thedepartment senior technician who would plan and supervise the laboratory renovation andlaboratory
, the we CITfaculty were hesitant to teach such a course because of several perceived obstacles. In the case ofiPhone development, both instructors and students would be required to learn several newtechnologies.Developing for the iPhone requires using Macintosh workstations. All prior development formobile devices had been done in a Windows environment, as was done in the prerequisite threeprogramming courses. In fact, there was no Macintosh computing laboratory within our Page 22.1305.3department. Macintosh workstations use the Macintosh Operating System (Mac OS). Whilemany students, and a few faculty, own and use Mac computers, no
. Page 22.1703.1 c American Society for Engineering Education, 2011 Work in Progress: Distance teaching of Thermodynamics with Adobe Connect and Dedicated Engineering Software.Abstract.A considerable number of schools nationwide are currently offering undergraduate engineeringand engineering technology programs via distance-learning. Unlike other “narrative” academicprograms, however, engineering programs still present pedagogical challenges in distanceeducation especially in subjects that require mathematical derivation, sample problem-solution,property evaluation and laboratory practice. Several technologies are currently available fordistance education, such as: TV broadcasting, web-based
AC 2011-1825: THE INSIDE-OUT CLASSROOM: A WIN-WIN-WIN STRAT-EGY FOR TEACHING WITH TECHNOLOGYDaniel J. Waldorf, California Polytechnic State University Dr. Daniel Waldorf is a Professor in Industrial and Manufacturing Engineering at Cal Poly State Univer- sity. He received his Ph.D. in industrial engineering in 1996 from the University of Illinois at Urbana- Champaign. At Cal Poly he teaches mainly in the manufacturing processes area, including Manufacturing Process Design, Tool Engineering, Computer-Aided Manufacturing, and Quality Engineering. He worked for two years in Chicago as a Quality/Manufacturing Engineer at ATF, Inc., a supplier of specialty cold- formed and machined components for automotive applications
AC 2011-1002: OLD TRICKS FOR A NEW DOG: AN INNOVATIVE SOFT-WARE TOOL FOR TEACHING REAL-TIME DSP ON A NEW HARD-WARE PLATFORMMr. Michael G. Morrow P.E.,Cameron H. G. Wright, University of Wyoming Cameron H. G. Wright, Ph.D, P.E., is an Associate Professor with the Department of Electrical and Com- puter Engineering at the University of Wyoming, Laramie, WY. He was previously Professor and Deputy Department Head in the Department of Electrical Engineering at the United States Air Force Academy, and served as an R&D engineering officer in the U.S. Air Force for over 20 years. He received the B.S.E.E. (summa cum laude) from Louisiana Tech University in 1983, the M.S.E.E. from Purdue Uni- versity in 1988, and the Ph.D
procedures that gobeyond those possible with the physical hardware.Second Life is classified by some educators as a Multi-User Virtual Environment, a term forvirtual worlds that lack the ‘game’ component 12. As 3D virtual community, Second Lifeincreased in popularity, teaching and meeting spaces were designed to compare 3D game with3D virtual world communities. This paper describes some of the methods used to overcome thetechnical obstacles in creating virtual laboratory experiments in Second Life, a popular virtualenvironment that so far has mostly been used for entertainment and social interactions.Overview of Second Life / OpenSimulatorAlthough Second Life looks like a 3D game, it is one of the most popular non-game, 3D multi-user virtual
. Processing provides a unique combination of cost (free), broad communitysupport, extensibility, and as a Java based environment, skills learned in processing can be easilyported to other environments.In the following sections we will summarize the capabilities of Processing, provide someguidelines for experience design, and explore two case studies on the use of Processing in theclassroom, as a method of demonstration in one case, and as a virtual laboratory in a second case.Processing CapabilitiesProcessing is a Java-based programming language and development environment targetedprimarily to electronic artists and visual designers, but is becoming popular with hobbyists andeducators, primarily for teaching introductory computer science. The
within university communication systems classrooms,teaching laboratories, and their natural follow-on coursework (e.g., SDR, CR, DigitalCommunications, Wireless Communications, and Satellite Communications).This paper will discuss the utilization of National Instruments (NI) LabVIEW-based virtualinstrumentation with the USRP and a UHD-based software driver to rapidly create real-timecommunication systems demonstrations for the classroom and/or laboratory settings. Thecombination of the USRP, UHD, LabVIEW, and Windows support enables implementation andexploration of both foundational and more advanced concepts related to signal processing andcommunications.1 IntroductionUniversities have been teaching software defined radio (SDR) courses and
the students to effectivelyconceptualize electromagnetic radiations and be able to relate theory to practice. Students’experiences are also presented to demonstrate what they learned.References1. RF Circuit Design: Theory and Applications, 2nd Edition, Reinhold Ludwig and Gene Bogdanov, Prentice Hall, 2009, pp.1-96.2. Fundamentals of Engineering Electromagnetics, David K. Cheng, Addison Wesley, 1993, pp. 272-330.3. Fundamentals of Applied Electromagnetics, Fawwaz T. Ulaby, Prentice Hall, 2004, pp. 35-924. Lab-Volt, Data Acquisition and Management Software, Antenna Fundamentals Manuals. Lab-Volt Ltd., 1996.5. Khan, Hamid, “Enhancing Teaching Effectiveness and Laboratory Productivity by Computer
the robot’s functionality from within MATLAB’spowerful integrated development environment, which already includes numerical solvers, imageprocessing routines, neural network libraries, and control system design tools. We describe thedevelopment process and the toolbox’s features; and illustrate its capabilities with some projectsfrom our own Introductory Robotics class where it was beta tested. A student opinion surveyindicated that the toolbox was well received, but suggests its stability could be improved.1. IntroductionIt has been widely noted that engineering students benefit from a variety of teaching approaches,in particular visual and experiential learners prefer hands on laboratory experiences [1].Teaching robotics is no exception [2
private pilot. Tim leads the AT Department’s Hangar of the Future Research Laboratory, a multi-disciplinary lab focused on technology and process innovations for air vehi- cle maintenance, aligning with U.S. Next Generation Air Transportation System philosophy of embedded safety risk management and human-in-the-loop technologies. He currently teaches a highly interactive senior level maintenance management capstone course, Aircraft Airworthiness Assurance (AT402), uti- lizing Purdue’s large transport aircraft, incorporating SMS and QMS principles, engaging his students through active learning challenges and applied research projects.Dr. David M Whittinghill, Purdue University, West LafayetteRaymond A. Hansen, Purdue
the weekly directed laboratory assignments as well as the quarter-long project.As part of the course, students were required to purchase their own Arduino board and afew other parts. This is a departure from the way this course has been run in the past inour department, where the school maintained a set of microcontrollers that were onlyavailable during the laboratory sessions. However, due to the desire to incorporate aquarter-long project and potentially longer laboratory assignments, restricting the use ofthe Arduino boards to laboratory sessions was not feasible, so students were required topurchase their own boards. Costs were kept in line with previous iterations of the courseby requiring a much cheaper textbook, however.The following
AC 2011-381: REAL-TIME CONTROL IMPLEMENTATION OF SIMPLEMECHATRONIC DEVICES USING MATLAB/SIMULINK/RTW PLATFORMAbhijit Nagchaudhuri, University of Maryland, Eastern Shore Abhijit Nagchaudhuri is a Professor in the Department of Engineering and Aviation Sciences at University of Maryland Eastern Shore. Dr. Nagchaudhuri is a member of ASME and ASEE professional societies and is actively involved in teaching and research in the fields of engineering mechanics, robotics, systems and control, design of mechanical and mechatronic systems, precision agriculture and remote sensing. Dr. Nagchaudhuri received his bachelors degree from Jadavpur University in Calcutta, India with a honors in Mechanical Engineering in 1983
AC 2011-1464: PUTTING BELLS & WHISTLES ON DSP TOOLKIT OFLABVIEWMurat Tanyel, Geneva College Murat Tanyel is a professor of engineering at Geneva College. He teaches upper level electrical engineer- ing courses. Prior to teaching at Geneva College, Dr. Tanyel taught at Dordt College in Sioux Center, IA. He started his career at Drexel University where he worked for the Enhanced Educational Experience for Engineering Students (E4) project, setting up and teaching laboratory and hands-on computer exper- iments for engineering freshmen and sophomores. For one semester, he was also a visiting professor at the United Arab Emirates University in Al-Ain, UAE where he helped set up an innovative introductory
exhibits. Benefits of employing virtual world simulation tools include rapidprototyping, low-cost development and delivery, collaboration, and access to aninternational community. An interactive robotics exhibit in the area of mobile robotprogramming education has been constructed and deployed in the virtual world. Asecond exhibit to enable 3D human-robot interaction studies has also been established.Student access, involvement, and collaboration in the virtual robotics exhibits have beensuccessful. Simulations developed in 3D virtual worlds, such as Second Life, can serveas a highly accessible virtual laboratory and can support a variety of educational andresearch objectives in the area of mobile robotics and human-robot interactions.1
AC 2011-1618: AUDIO-VISUAL LAB TUTORIALS TO DEVELOP INDE-PENDENT LEARNERSDeborah Walter, Rose-Hulman Institute of Technology Dr. Deborah Walter is an Assistant Professor of Electrical and Computer Engineering at Rose-Hulman Institute of Technology. She teaches courses in circuits, electromagnetics, and medical imaging. Before joining academia in 2006, she was at the Computed Tomography Laboratory at GE’s Global Research Center for 8 years. She worked on several technology development projects in the area of X-ray CT for medical and industrial imaging. She is a named inventor on 9 patents. She has been active in the recruitment and retention of women and minorities in engineering and currently PI for an NSF-STEM
University in December 2002. His research has been funded by the NSF, the Air Force Office of Scientific Research, and the US Army. He has been awarded the National Science Foundation’s CAREER award, the American Society of Engineer- ing Education (ASEE) Mechanics Division Ferdinand P. Beer and E. Russell Johnson Jr. Outstanding New Educator Award, the 2009 Outstanding Teacher Award from the Stevens Alumni Association, and the 2006 Harvey N. Davis Distinguished Teaching Assistant Professor Award from Stevens.Hong Man, Stevens Institute of Technology Dr. Hong Man joined the faculty of Electrical and Computer Engineering at Stevens in January 2000. He received his Ph.D. degree in Electrical Engineering from the Georgia
.," Laptops in psychology: Conducting flexible in-class research and writing laboratories", New directions for teaching and learning Vol. 2005, No. 101, 2005, pp. 15-26.16 Fitch, J.," Student feedback in the college classroom: A technology solution", Educational Technology Research and Development Vol. 52, No. 1, 2004, pp. 71-77.17 Mazur, E., Peer Instruction: a user’s manual, Englewood Cliffs, NJ: Prentice Hall, 1997.18 Crouch, C.H., and E. Mazur," Peer Instruction: Ten years of experience and results", A merican Journal of Physics Vol. 69, 2001, pp. 970-977.19 Hake, R.R., "Design-Based Research in Physics Education Research: A Review", Handbook of Design Research Methods in Mathematics, Science, and Technology Education: Erlbaum
AC 2011-107: MACROERGONOMIC ANALYSIS OF INSTRUCTIONALTECHNOLOGY ADOPTION: A CASE STUDY ON TABLET PC ADOP-TIONLeanna M. Horton, Virginia Tech Leanna Horton is a Ph.D. Candidate in the Industrial and Systems Engineering Department at Virginia Tech and is a member of the Industrial Ergonomics and Biomechanics Laboratory. Her research is focused on the effects of job rotation on muscle fatigue and performance.Kahyun Kim, Virginia Tech Kahyun Kim is a graduate student currently pursuing Ph.D. in Industrial and Systems Engineering at Virginia Tech with a concentration on human factors and ergonomics. Her research interest is in the impact of various factors on team collaboration and effectiveness as well as team
Course for Engineering StudentsAbstractFor Spring 2011, a senior-level robotics course (first taught in Spring 2010) had been revisedaccording to principles for “Smart Teaching” described in the book “How Learning Works”.Homework, laboratory sessions and anchor projects had been redesigned to provide betterscaffolding for students with 2 different but complementary engineering backgrounds, and alsofor a better flow towards the theme of humanoid robotics. The e-portfolio tool EMMA wasintegrated into this course as a collaboration and feedback tool between instructor and students tohelp improve student algorithm development work, but EMMA was not found to be responsiveenough nor useful for this kind of use.IntroductionIn the Summer 2010, the
degrees and aretaking part in a seminar named ‘New tools in teaching and learning of Graphic EngineeringI’. Following figures shows snapshots from users undertaking tests (Figure 9). The gameworks on iPhone and iPod Touch devices. Figure 9. Users testing iCube applicationMethodologyThe study was conducted in a lab setting and began with an introduction to the objectives ofiCube and the study itself. Participants were then given a demonstration of the device in Page 22.425.6which they were shown how to use a iPod Touch for given a set of tasks (e.g. internetnavigation, wireless internet access, etc.).Study with users in this
, builds, and races solar powered electric vehicles. His interests lie primarily in the area of embedded system hardware and software development. Page 22.364.1 c American Society for Engineering Education, 2011 Computer Interface Innovations for an ECE Mobile Robotics Platform Applicable to K-12 and University StudentsSince the 1990’s, robots have been adopted into K-12 classrooms and a host of Universityprograms to engage and motivate students in STEM achievement and to aid in teaching coreSTEM disciplines. The robots used in these efforts have ranged from commercially