authentic experiences. However, inkeeping things at grade level and making room for youth to insert their ideas and experiences, allbackgrounds are primarily vague and do not explicitly suggest harm will come to the zone. Forexample, "The Park," although highlighting what will be lost, there is also language to suggestthat another park is available—leaving plenty of space for youth to compare this with theirnearest parks and playground compared to our fictional space. Prior to building the prototypebridge, youth were instructed to write down their zone choices and justifications for building onthem on the worksheet. The activity was also designed intentionally to create small groups which each youthleader would spearhead. The only additional
underrepresentation of Black males is a persistentissue plaguing not only undergraduate programs but also the engineering profession as a whole,including those in faculty positions [10] [12].Many studies investigated the factors positively correlated with their academic persistence andsuccess to find a solution to the phenomenon of Black males’ underrepresentation in engineeringmentioned above. Research indicates that establishing an inclusive culture in the programenvironment that allows for adequate academic and social support networking is crucial to theirsuccess [11] [12] [13] [14]. Not surprisingly, various forms of mentoring, such as facultymentoring and peer mentoring, are found to generate a positive “vibe,” facilitating their sense ofbelonging and
) 5. Synthesize and Integrate the Best Evidence into a Joint Position: The four members of the group drop all advocacy to synthesize and integrate what they learned. Each group creates a synthesis of what is now known; our experience is that they do not have difficulty with this, possibly because of the dual perspectives they have taken. They summarize a joint position to which both sides agreed. Subsequently, they (a) prepare a cooperative report with each member of the group selecting a topic supporting the synthesis and writing a paragraph supported by the research; (b) combine their paragraphs into a single paper and refine the flow of the paper; (c) present their conclusions to the class
, participants learn about and gain access to resources that are explicitly DEI-related: they mobilize resources to advance equity at the institutional level as an outcome of theprojects and collaborate on additional projects to embed DEI into the process of change-makingitself, starting from the initial stages of writing a proposal. Secondly, the way participants engagewith each other, and approach change goals puts equity and inclusion into practice: participantsidentify and tackle structural barriers to change through DEI-aligned behaviors, from addressinghow institutional circumstances create resistance to DEI, to developing a shared vision forsystemic change that is inclusive and collaborative.IntroductionWe draw on resource mobilization theory and
universities.RedShirt programs are one example of this type of asset-based student support program aimed atbroadening participation in engineering for students from minoritized racial or ethnic backgrounds orfrom under-resourced high schools and geographic regions (Myers et al., 2018). RedShirt programsprovide an alternative admissions pathway for students who do not meet traditional admissions criteriafor highly selective engineering colleges, but still have the desire and potential to be an engineer.RedShirt programs focus on building strong peer networks and communities to support academicsuccess, communities that are initiated through required summer bridge experiences and reinforcedthrough “high-touch” advising, study sessions, and targeted coursework
factors that inhibit full participation of students who identify with historically marginalized groups and investigate evidence-based strategies for mitigating these inequities. In addition, she is interested in technology and how specific affordances can change the ways we collaborate, learn, read, and write. Teaching engineering communication allows her to apply this work as she coaches students through collaboration, design thinking, and design communication. She is part of a team of faculty innovators who originated Tandem (tandem.ai.umich.edu), a tool designed to help facilitate equitable and inclusive teamwork environments.Prachi Shah, University of Michigan ©American Society for
) feminism of their day, the Combahee River Collectivehighlighted intersectional politics and activism within a framework of solidarity. Through the1980s, writers such as Audre Lorde and Patricia Hill Collins highlighted the multitude of waysthat intersecting identities gave rise to unique, interlocking, and intersectional forms ofoppression [14], [15]. These writings brought intersectionality to the center of activist thought,challenging the previously single-issue politics of groups such as the civil rights movement, thegay/lesbian liberation movement, and second-wave feminism. Since its roots in activist politics and articulation by Crenshaw, intersectionality has madeits way into a wide array of disciplines. Packaged as a tenet in
courses is uniquely important. It is also uniquely difficult to do. Leydens and Lucena acknowledge that some of their engineering for social justice (E4SJ)criteria are easier to implement in design than ES courses, but they also write, “Whereaslistening contextually is greatly facilitated by design projects that feature a client…, suchlistening is more abstract in the absence of clients… However, students can identify the kind oflistening they would do with hypothetical clients” [13]. This quote suggests both that it isdifficult to integrate an equity focus into science courses, but also that similar approaches can beused in ES and design courses, though the connections to real-world impacts might be moreabstract or hypothetical in the
. The ROLE program at the HSI supports engineeringsophomore, junior, and senior-level students in developing research skills needed in technicalfields; interpersonal skills needed to be successful employees; and academic and professionalskills that are transferable in their decisions to enter graduate studies or the professional world.ROLE students learn technical skills through hands-on activities in a laboratory setting; receivenear-peer and faculty mentorship from individuals with similar cultural and linguisticbackgrounds; attend culturally relevant workshops that support academic, interpersonal, andprofessional growth; and participate in outreach events within the local community and K-12school environments. This study will work
youth.Our project’s focus on strengthening belonging through the use of youth participatory actionresearch (YPAR) in technology-rich spaces to develop deliverables iteratively, cater to theserecommendations. As shown technology and makerspaces provide opportunities to create physical artifactsthat build personal connections with engineering and technology [10], [11], [12], [13]. Howeverthere have been unequitable uses of said spaces and resources for youth from underservedcommunities that place youth at a disadvantage compared to their more privileged peers [1],[14], [15], [16]. Therefore the use of YPAR in technology rich spaces, youth may use researchmethods to make sense of and address social problems impacting their communities [17
possible. The revised course includes: (1) a weekly sociotechnical lab withsmall-group activities and discussions on curriculum-aligned real-world justice topics, (2)weekly post-lab readings and written reflections, (3) week-long projects where codingassignments are embedded in a justice topic, and (4) a final project that explicitly considerssocial impacts of numerical analysis or design. Each course section is supported byundergraduate equity learning assistants who help facilitate the sociotechnical labs and act asapproachable peer mentors who can push students to think differently. Every assignment,including these written reflections, is graded and contributes to students’ overall courseassessment.While there were several artifacts, topics
finally resignedly accepted ownership of the new DEI design course, due to beingthe instructor most consistently assigned to teach it. She decided to completely redesign thecourse to deliberately separate the technical and social elements. Diana writes about this process: A history of poor student evaluations has led us to be less bold with these justice topics than they deserve. We have developed a hesitance towards highlighting the justice focus of this course, and rather ‘trick’ students into thinking the course is more technically focused by couching these topics within the premise of user- centered design… The line that we toe is convincing students that the course content is valuable to them while not
contributions of microfluidic systems in the visual system. She received the 2023 AIMBE Professional Impact Award for the inclusion of Health Disparities within under/graduate training and was honored as the 2024 Plenary Speaker to the BMES Council of Chairs for integration of health disparities in Biomedical Engineering curricula. She is an executive committee member for the Rutgers Connection Network that develops inclusive forms of peer mentoring for mid-career faculty as well as new faculty.Kelsey Watts, University of Virginia Kelsey Watts is a postdoc at the University of Virginia in Biomedical Engineering. She is committed to developing more inclusive teaching and research practices
culturalexpectations within East-Asian communities. These experiences offer a nuancedperspective on participants' challenges, enabling an empathetic and culturallysensitive approach.My position as both a researcher and an insider enables me to build rapport and trustwith participants, fostering a safe and open environment for sharing authenticexperiences. At the same time, I am critically aware that my positionality mightinfluence how I interpret and represent their narratives. To actively address potentialbiases, I will employ several strategies. First, I will maintain a reflexive journal todocument my assumptions, emotional responses, and potential influences on theresearch process. Second, I will seek regular feedback from peers, mentors, andadvisors who
someone’s personhood before mentioning their disability (e.g., “person withdisabilities”). Identity-first language mentions the disability before the person (e.g., “disabledperson”) [17]. All authors identify as disabled and use both identity-first and person-first languagein their writing. However, it is also important to note that we both prefer identity-first language forourselves. We believe that using identity-first language is important to bring visibility to thedisability as an identity, build community, and seek needed resources. We ask that non-disabledpeople mirror and respect the identity labeling preferences of the disabled person or group thatthey are interacting with and/or communicating about. In this paper, we use person- and
analysis [25, 26]. Specifically, we engaged insix phases of thematic analysis, including (1) data familiarization, (2) generating codes, (3)constructing themes, (4) reviewing themes, (5) defining themes, and (6) writing up the results toguide data analysis. We executed our analysis by reading through each semi-structured interviewtranscript and open-ended survey response and then rereading to identify quotes of interest. Next,we engaged in two rounds of coding using our conceptual framework (e.g., the ECSJ pillars) as apriori codes. We used thematic analysis as a guide rather than a prescriptive method. Initialcodes and transcript quotes were documented using a spreadsheet software program individually.Then, we discussed them through peer
class upbringing as well as a decadeworking with community groups in northern Haiti on ecological sanitation projects. As a white,cisgender, straight-presenting, US trained engineering professor with the associated privilegesafforded and potential biases, she is working to learn from colleagues and students holding otherintersectional identities about their experience of engineering culture in an effort to expand bothits welcome and self-critique. Her motivation for creating the class was to create space fordiscussion, reflection, and peer to peer co-learning around engineering and social justice issues -something that would have helped her thrive as a female engineering student. 3. Course Description Following a faculty learning circle
racial diversity decreases, and thefact that between high school and graduate school or the profession the racial diversity of theengineering field decreases [4], then we can presume that undergraduate engineering educationcontributes to racial inequity. Although many aspects coincide within undergraduate engineeringeducation, including advising, finances, curriculum, pedagogy, grading, peer groups, etc., we canpresume that classroom practice constitutes a bulk of student lives and therefore is a primaryplace we may expect to find mechanisms of racial inequity.Methodologically, classroom observations through ethnography or video research are theprimary tools for investigating classroom practice and interaction as mechanisms of inequity.While
extended to similarly innate forms of neurodivergence, thusly: bysituating similarly these forms of neurodivergence as something one can ‘have,’ person-firstlanguage perpetuates the idea that neurodivergence can always be separated from the self – andtherefore removed or ‘cured.’Steps towards the neurodiversity paradigmThe earliest instance of neurodiv* term use I found in the EER literature was in an articlepublished in 2015, three years after Walker first introduced the neurodiversity paradigm inpublished writing [2] and one year after she first posted “Neurodiversity: Some Basic Terms &Definitions” online [6]. Though all analyzed articles were published after these important works,none directly referenced Walker, and none were entirely
engage the students in theideas of the articles, we provided students with three reading questions that they would respondto before coming to class. The questions are listed below: 1. What do you want to know more about regarding air pollution exposure across race and poverty level? What questions do you have? 2. How might past policies and events help you make more sense of the paper's findings? 3. As the study’s authors write: “A focus on poverty to the exclusion of race may be insufficient to meet the needs of all burdened populations.” The researchers found that even after accounting for poverty, they saw differential impacts based on race. Why do you think it is important to separate out race and poverty level and
are compared against the whole datasetto ensure that each theme works as it should.Phase 5. Refining, Defining, and Naming Themes: In Phase 5, themes are tested to ensure thatthey center meaning-making [12]. Themes must be sufficiently rich and informative to fullycapture the concepts they represent. Writing an abstract or definition for each theme can assist intheir elimination or retention [12]. After testing, themes are named using short phrases that evoketheir “meaning and analytic direction” [12].4. Results and Discussion4.1 Scoping ReviewAfter searching the two databases, 733 articles were found on Scopus and 397 articles were foundon Web of Science, for a total of 1,130 articles. After duplicate removal, 1,078 articles remained.The
teaches courses and conducts research related to Thermodynamics, engineering and public policy, engineering education, and gender in engineering and science. She is the co-author on an engineering textbook, Fundamentals of Engineering Thermodynamics, which is used worldwide in over 250 institutions and she is an author on over 95 peer- reviewed publications.Caroline SolomonDr. Elizabeth Litzler, University of Washington Elizabeth Litzler, Ph.D., is the director of the University of Washington Center for Evaluation and Re- search for STEM Equity (UW CERSE) and an affiliate assistant professor of sociology. She has been at UW working on STEM Equity issues for more than 17 years. Dr. Litzler is a member of ASEE, 2020-2021
inequity in STEM, and indenying the existence of the challenges women in STEM are forced to navigate, men reifyexisting gender disparities [40] For example, in their study of over 700 participants in which30% of respondents were faculty, Handley et al. [40] found that men were less receptive toscholarship that examines gender bias in STEM than their women peers. The failure of the majority of men to acknowledge the well-documented issue of genderinequity in STEM makes men allies all the more important [40]. Although allies may not be ableto affect the beliefs of all men, they may be able to influence some colleagues – both women andmen. In the case of supporting women, the efforts of a man ally may support a woman’sretention in a STEM
peers, to decreasingtheir mental health and making them less likely to complete their degrees. Coley et al. (2023) andMcGee, et al. (2019) similarly found that racialized experiences within STEM contributednegatively to the wellbeing of Black graduate students. Finally, Farra, et al., highlight theimportance to mental health of cultivating sense of belonging among women international studentsin STEM, and the negative impact on their well-being of not doing so.Despite the growing and rich body of literature addressing the mental health concerns of STEMgraduate students, including recent work focused specifically on the impact of systems ofoppression on both Women of Color and international students in STEM, less known about thespecific
as important as content knowledge,” we refer to a practice as an intentionalbehavior with specific meaning within a community. In addition to easing the burden oneducators trying to inspire the next generation of engineers, these strategies are based on bestknown practices to 1) retain students as populations across the United States decrease and changedemographically, and 2) to graduate engineers ready to tackle incredibly complex socialproblems.During this formative time in engineering education, the curriculum, interactions with facultyand peers, and course options give students insight into which skills are necessary and which aresupposedly optional for practicing engineers. Berdanier [11] makes it clear the “optional” skillsoften are
Paper ID #42024Inclusive Teaching Practices in Engineering: A Systematic Review of Articlesfrom 2018 to 2023Rajita Singh, University of Oklahoma Rajita Singh is a junior at the University of Oklahoma, where they are pursuing an English major with a minor in Psychology. Passionate about the improvement of education in all fields, they are involved in multiple projects centered on researching pedagogy. Their most recent involvement has been in engineering pedagogy, where they bring their writing skills and synthesis abilities.Dr. Javeed Kittur, University of Oklahoma Dr. Kittur is an Assistant Professor in the Gallogly
accounts for the differences?Literature ReviewLiterature was identified by searching various databases (Web of Science Core Collection, Webof Science Inspec, and ASEE Peer) for keywords, which included “disparities”, “academia”,“women”, “engineering”, “inequities”, and “gender”. The identified records were screened forrelevance, availability, and duplicates. In total, 110 papers were selected to be analyzed from allareas of academia in a full-text analysis. 30 papers were disqualified after review for not fittingthe scope of the study. Some of those reasons included a focus on undergraduate students and afocus on women in engineering in the industry. 18 papers focused on engineering and wereanalyzed to identify disparities for women, the causes of
interests [12]. Thissignificantly impedes the sense of belonging of non-traditional learners and those whosepreferred communication mode is other than reading and writing. The purpose of this project wasto support engineering instructors in redesigning their courses to support and engage a broaderrange of neurological and cognitive functioning within students to support and promoteparticipation of non-traditional thinkers and problem solvers in the engineering fields. Thepurpose of this study was to investigate instructors’ conceptions of neurodiversity to provideinsight on the effects of the professional development on instructors. Additionally, it follows thatinstructors' views about neurodiversity affect the ways in which they support (or do not
the thought policing.This participant seemed in conflict with the ideas that were presented during thevignette-based HC survey and expressed frustration. He thinks that women do not gointo engineering only because they choose not to, which is related to the first conceptionthat systemic discrimination (a form of HC) is not an issue, yet the experiences andstatistics of marginalized individuals in engineering argue otherwise. The participantdoes not account for gender stereotypes and influences that impact women’s choices togo into engineering, such as the influence of family, peer groups, and societal/culturalgender stereotypes on the attraction of adolescent boys to STEM-related subjects andemphasis on their performance [48]. The participant
characteristics that they believe are representative of anengineering educator. This adoption and emulation of attitudes, behaviors and practices – in allforms of linguistic and symbolic units – serve the purpose of being recognized as engineeringeducators by peers, mentors, professors, and those who are part of the world of engineering [38,39]. Thus, we posit that current discourses and practices of doctoral engineering students in theclassroom, as they engage in teaching, are a representation of the current culture of engineering.That is, doctoral engineering students enact overt and subtle behaviors learned and adopted inengineering spaces throughout their undergraduate and doctoral programs such as a sense ofsuperiority in their ability to solve