group.Individual student feedback also demonstrated the development of peer and mentorrelationships as a result of teamwork throughout the semester. The learning experience inthis course is expected to motivate the first-year students towards engineering andprepare them for future engineering design projects.IntroductionIn addition to knowledge developed through courses in the engineering program, it isnecessary to familiarize students with product design and the development process as it isone of the important competencies engineering students must develop throughout theireducational and professional careers. The desired learning outcome of this course was toprepare students for their engineering education and professional occupations.Knowledge and
industry-oriented, with many having spent some part of theirengineering career in industry. Therefore, all projects in this sequence are industry orindustry-type projects. Because of our hands-on nature and our learn-by-doingphilosophy, Cal Poly engineering graduates are known in the industries of the State ofCalifornia as industry-ready upon graduation. This change in our design curriculum hasenhanced our reputation even more. Industrial participants in our design sequenceinclude Boeing, Solar Turbines, Parker Hannifin, the Golden Gate Bridge, the DeutschesMuseum, Lockheed Martin, Raytheon, and a host of other companies. With theelimination of individual projects and the introduction of many industrial projects, thedesign sequence has developed a
assessment practices in their curriculum through an online surveygiven to the same cohort of students in third year and fourth year undergraduate engineering.Keywords: Assessment practices, Design based learning, Students’ perceptions.IntroductionAssessment in higher education is a process of evaluating students curricular performancebased on learning outcomes using limited context of standardized rubrics. In this 21st century,students need to acquire career focused knowledge and skills expected by the industry. Tomeet those industry requirements and societal needs as a graduate, student’s level ofachievements have to be assessed appropriately. Academia has to develop changing qualityof assessment methods, which will fulfil the demand of new
AC 2008-664: A COMPETENCY GAP IN THE COMPREHENSIVE DESIGNEDUCATIONVukica Jovanovic, Purdue University, West Lafayette Vukica Jovanovic began her academic career in 2001 when she graduated at University of Novi Sad, majoring in Industrial Engineering and Management, Minor in Mechatronics, Robotics and Automation. She was working as Graduate Research and Teaching assistant and lectured various courses at departments of Industrial Engineering, Mechanical Engineering and Mechatronics from 2001 until 2006. She was an active member European organizing committee of student robotic contest Eurobot and chief of Eurobot organizing committee of Serbian student national competition in robotics
for students to work onbecome essential.The world of engineering includes such a diverse set of topics that it would be impossible tocover them in one lifetime. It is unreasonable to cover the many engineering disciplines in oneintroductory course. Instead, an uncoverage approach should be taken as suggested in Calder’sUncoverage: Towards a Signature Pedagogy for the History Survey6. Thus, the design projectswhich are aimed to inspire students to learn about engineering and train them for challenging andcreative career opportunities should be carefully determined in regard to the discipline areas offocus. Subject areas in mechanical, electrical, and computer science surface due to theirfundamental roles in serving other disciplines. After
AC 2011-2151: DIFFERENCES BETWEEN STUDENT AND FACULTY EX-PECTATIONS FOR A ROBOTICS CAPSTONE DESIGN PROJECTKevin M Sevilla, Virginia Tech Kevin Sevilla is a Ph.D student at Virginia Tech in the Department of Engineering Education.Maura J. Borrego, Virginia Tech Maura Borrego is an Associate Professor in the Department of Engineering Education at Virginia Tech. She is currently serving a AAAS Science and Technology Policy Fellowship at the National Science Foundation. Her research interests focus on interdisciplinary faculty members and graduate students in engineering and science, with engineering education as a specific case. Dr. Borrego holds U.S. NSF CAREER and Presidential Early Career Award for Scientists and
AC 2010-817: DEVELOPMENT OF HIGH PERFORMANCE CAPSTONEPROJECT TEAMS AND THE SELECTION PROCESSStephen Laguette, University of California-Santa Barbara Stephen Laguette received his BS, MS in Mechanical Engineering from UCLA. He is currently a Lecturer at the University of California, Santa Barbara in the Department of Mechanical Engineering and the Technology Management Program in the College of Engineering. His career has included executive R&D management positions with a number of medical device companies. He has been responsible for the creation of complex medical devices with over fifteen US patents issued in a variety of surgical fields including General Surgery, Plastic Surgery
’ learning in a mechanism design class. As such, students wereasked to submit reflections at the end of each project. Following are some example promptsgiven to the students for reflection:1) Draw a concept map that shows the connections you have made between engineering andstorytelling.2) What does "Storytelling with Machines" mean for you personally beyond the class?3) What were your top 3 learnings from this class? Why?4) What was the most challenging aspect of the class?5) How will you apply what you learned in this class in your career?These reflections prompted the students to think about the connections they were able to makebetween storytelling and engineering, reflect on the challenges and successes, and lessons learntthrough the process of
how capstoneprepares students for their careers and makes recommendations to fortify that connection.The objectives of Northeastern University’s Mechanical and Industrial Engineering (IE) Capstone Designcourse map strongly to the new ABET student outcomes. The students’ progress in meeting thoseobjectives was evaluated from multiple perspectives. 1) Faculty advisor evaluations assessed technicalproblem-solving success, 2) a validated tool judged the completeness of the prototype solution andvalidation testing, and 3) a systematic examination of capstone teams’ final reports evaluated applicationand synthesis of knowledge obtained earlier in the curriculum. Additionally, students were askedindividually to reflect on and outline the skills and
University. He teaches context-centered electrical engineering and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?” He has also been part of the teaching team for NSF’s Innovation Corps for Learning, and was named one of ASEE PRISM’s ”20 Faculty Under 40” in 2014. Dr
moving through the same curriculum, as a cohort, over the past three years.Simultaneously, the instructor of the introductory chemical and biological engineering course,which targets first semester freshmen, found through end of semester course reviews that manystudents remain uncertain of what career opportunities are afforded to them as chemical orbiological engineers. To remedy this perceived problem, the authors were inspired by the workof Butterfield and Branch [1] where seniors ‘hired’ freshman students to assist in the laboratorycomponent of the Capstone Design experience. In their work, freshman participants self-reportedhaving learned important engineering concepts, and also gained insight into their future careertrajectory.Our approach
Paper ID #10783Building A Healthy Online Student Community Through Education Environ-ment DesignMrs. Karen L. Bollenbach, The University of Virginia Mrs. Bollenbach is a student at the University of Virginia and anticipates receiving her B.S. in engineering science in May 2014. She graduated from Virginia Tech with a B.S. in health education in 1993 before beginning a career in the insurance industry. In 2009, she began studying drafting and engineering at Tide- water Community College. As a 2013 Virginia Microelectronics Consortium (VMEC) summer scholar, she conducted thermoelectric thin film research at the Applied
instructionalbenefit of tracking student learning.Bibliography[1] “Biomedical Engineering: What is it and what are the career opportunities?” Mendeley Careers. [Online]. Available: https://www.mendeley.com/careers/news/careers-jobs-field/biomedical-engineering-what-it-and- what-are-career-opportunities. [Accessed: 25-Feb-2021][2] C. Nerantzi, “A Case of Problem Based Learning for Cross-Institutional Collaboration,” Electronic Journal of e-Learning, vol. 10, no. 3, pp. 306–314, 2012.[3] A. Ingram, “Engagement in Online Learning Communities,” in Elements of quality online education: engaging communities, vol. 6, J. Bourne and J. C. Moore, Eds. Needham, MA: Sloan Consortium, 2005, p. 205 [Online]. Available: https
Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teach
many engineering programs, just as in many plant process systems,the path from input (high school) to the output (qualified graduate) is quite separate for thedifferent streams (i.e. mechanical engineering stream, versus the electrical engineering, versusbiological engineering).In this conceptual model of the education of young engineers, the decision of which processstream the students enter would, in their minds, have a huge impact on their careers. Studentsspend a great deal of time and suffer sleepless nights deciding which stream to enter, notknowing at the start what they will end up looking like at the end, nor what sort of careeropportunities they will have when they graduate. Unfortunately, a student has very little
member of the NASPA Center for Women National Board and co-founded the University of Michigan Women in Student Affairs chapter. Jennifer’s research interests include the culture of busy, the intersection of women’s higher education career ascension and professional development, and women’s leadership development. She is currently a doctoral student at New England College and holds her M.Ed. in Higher Education Student Affairs from the University of Vermont and a B.A from Oakland University.Mr. Stefan M Turcic II, University of Michigan Stefan Turcic is a recent graduate from the University of Michigan in Ann Arbor, MI, where he received his M.A. in Higher Education from the Center for the Study of Higher and
called AerosPACE. All authors are former students who took theAerosPACE course. The paper does not present a rigorous research approach, but rather,particular focus is placed on the first-hand student experience and consequent translation oflearned skills into the workforce. The evolution of the industry-sponsored program is outlinedincluding lessons-learned, student experiences and achievements. A methodology which otherindustry sponsors could use to replicate and scale similar projects in other fields is discussed. Toconclude the paper, the authors (all alumni of the program who are now working in industry)offer their thoughts on how the program has impacted their early careers in industry.IntroductionPrior to reviewing the project in
of a capstone design instructor workshop forthe 2014 Capstone Design Conference.1. IntroductionEngineering capstone design projects are intended to provide a culminating experience forseniors where they solve a complex, open-ended design challenge that requires the integration ofmany of the engineering concepts mastered over their undergraduate careers. The students are intheir final year of study and are preparing to transition out to the workforce, graduate studies, orto the military or public service.According to the 2005 comprehensive national survey of capstone design programs conducted byHowe[1], 98% of the 444 engineering programs at the 262 responding institutions (representingabout 26% of all programs) included capstone projects as
in the areas of data analysis, IT, and manufacturing. She received her PhD in Industrial Engineering from the University of Pittsburgh and her MS in Mechan- ical Engineering from Case Western while working for Delphi. She completed her postdoctoral studies in engineering education at the University of Pittsburgh.Ms. Lisa Marie Stabryla, University of Pittsburgh Lisa Stabryla is a mid-career PhD student, a 2017 National Defense Science and Engineering Graduate (NDSEG) fellow, and an aspiring faculty member. In the Civil and Environmental Engineering Depart- ment at the University of Pittsburgh, she is pursuing research questions related to the sustainable design of nanomaterials. She is also enrolled in the teacher
concepts and increase student interest in engineering asa career, Power Wheels® cars were purchased and provided to student teams in afreshman engineering design course. The teams were asked to “reverse engineer” thevehicles e.g. determine how the power was supplied to the vehicle, examine thetransmission, steering mechanism etc. Accelerometers and velocity sensors were alsomounted on the vehicles for data collection. Another class of engineering sophomores,majoring in electrical and computer engineering, provided expertise to the freshmandesign course in the development of control devices, such as an automatic steering andvehicle speed control. The toy car platform was designed to support radio control ofvehicle operations and also to allow semi
knowledge and skills from their capstone experience that they couldtransfer to their future careers. Yet, little is known about what students actually transfer to lifeafter graduation.2. MotivationThe transfer literature is filled with varying definitions and frameworks about what constitutestransfer. While it is not the intent of the authors to advocate for a particular framework, it isimportant to articulate the theoretical background from which our work originates. Our view oftransfer is influenced by the work of Schwartz et al.11 In their view, transfer is not necessarilythe ability to directly apply what one has learned to new situations but rather an identification ofskills and knowledge that best position preparation for future learning
or beyond theircollege careers. TABLE VI PRACTICE PROBLEMS QUOTES (MATRIX LOWER HEMISPHERE) Pseudonym Quote Momo “I’d like it if I had more choice into the projects I want to work on… but it is important to give students the option of choice to a certain limit - it might be unfair to students if it was totally open” Azula “I really like what Solar Car does - giving students free reign to work on the problem… but in classes, initially I wouldn’t want to get a very broad problem and figure it out, especially in intro courses.” Haru “So far we’ve just been doing the
to help students identify relationships between engineering fundamentalsand hardware design8,9 (Agogino, 1992, Brereton, 1998). Product dissection provides “hands-on”activities to couple engineering principles with significant visual feedback10,11,12 (Barr 2000,Lamancusa, 1996, Otto, 2001), and such “learning by doing” activities encourage thedevelopment of curiosity, proficiency and manual dexterity, three desirable traits of an engineer13(Beaudin, 1995). Dissection also gives students early exposure to functional products andprocesses, and introducing such experiences early in the students’ academic careers has beenshown to increase motivation and retention14 (Carlson 1997).While many benefits to product dissection have been identified
-Class Activities1. Think about your team tower-building exercise (an in-class activity on the first day of class). • Describe your design and manufacturing process. • What went well? Why? How could you build upon it in the future? • What difficulties did you have? Why? How could you improve in the future?2. Last week, you used an ad-hoc technique to generate concepts for a golf-ball retriever. Today, you used a systematic method. Compare the breadth, quality, and number of concepts from the two trials. How would you explain the differences?Lecture Topics3. Do highly innovative products typically serve new functions? Or do they satisfy old (previously satisfied) functions in new forms?4. In what situations during your career do
and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?,” and is a Co-PI on the NSF Revolutionizing Engineering Departments grant ”Additive Innovation: An Educational Ecosystem of Making and Risk Taking.” He was named one of ASEE PRISM’s ”20 Faculty Under 40” in 2014
at the National Science Foundation, on the board of the American Society for Engineering Edu- cation, and as an associate dean and director of interdisciplinary graduate programs. Her research awards include U.S. Presidential Early Career Award for Scientists and Engineers (PECASE), a National Science Foundation CAREER award, and two outstanding publication awards from the American Educational Research Association for her journal articles. Dr. Borrego is Deputy Editor for Journal of Engineering Education. All of Dr. Borrego’s degrees are in Materials Science and Engineering. Her M.S. and Ph.D. are from Stanford University, and her B.S. is from University of Wisconsin-Madison. c American
Electrical Engineering from National Taiwan University, and pursued a career in the tech industry while working on his gradu- ate degrees. Before joining Loyola University Chicago, he worked as a Postdoctoral Research Fellow at Harvard Medical School and conducted clinical research at the Neuromodulation Center of Spaulding Re- habilitation Hospital in Boston. His current research focuses on quantifying the extent of neuroplasticity induced by the application of brain and peripheral nerve stimulation.Mr. Allan Beale I have a BSEE from the University of Maryland, 1967 thus I have 50 years experience divided between 3 different fields: Aerospace, Computer and Medical. For these fields, the work was mostly analog and
the rest of their academic career. The project course hasalso been shown to have an impact on the student's enthusiasm and self-confidence in theirpersonal ability to succeed in engineering 1.Typically, the topic or scenario for early project problems are created by the faculty. Viewedfrom a cynical point of view, problems may appear to students as “cooked-up” , perhaps a bitstale, and in some cases students expect that they are not “real” design projects... after all, theyare just assignments in a university course, not design in the “Real World”. Unfortunately, eventhough the learning can be excellent, the experience of students can be influenced by their beliefof whether or not the design project is “real”.This paper describes an approach
develops and promotes the Upper Midwest Aerospace Consortium (UMAC), a major research initiative Seielstad founded in 1994. Before coming to UND, Seielstad had an active career as a© American Society for Engineering Education, 2006 initiative Seielstad founded in 1994. Before coming to UND, Seielstad had an active career as a radio astronomer, first at the California Institute of Technology's Owens Valley Radio Observatory, then at the National Radio Astronomy Observatory in Green Bank, West Virginia, where he was Site Director. He earned his undergraduate degree summa cum laude from Dartmouth College. His Ph.D. in Physics is from the California Institute of Technology. Seielstad
will experience in a career position in industry orgovernment. We have actively encouraged sponsors to not pre-judge what undergraduatestudents are capable of and to provide problems that have truly been challenging to solve. Thisapproach has been a success with respect to the students and the sponsors. The students gainmotivation from the more challenging projects and the sponsors have benefited from realsolutions with several capstone teams producing prototypes that have moved them closer to asolution. Of the 4 sponsor respondents to a survey from the 2013-14 academic year, 3 respondedaffirmatively to the survey question, “Do you feel that you have received, or are on track toreceive, information or results from the student team that you