engineering education. c American Society for Engineering Education, 2019 WIP: Epistemologies and Discourse Analysis for Transdisciplinary Capstone Projects in a Digital Media ProgramAbstract: This work in progress explores the epistemologies and discourse used byundergraduate students at the transdisciplinary intersection of engineering and the arts. Ourresearch questions are focused on the kinds of knowledge that students value, use, and identifywithin the context of an interdisciplinary digital media program, and exploring how theirlanguage reflects this. Our theoretical framework for analyzing epistemology draws uponqualitative work in STEM epistemology [1]–[3], domain specificity [4], [5
Paper ID #26064Work in Progress: Designing Modeling-based Learning Experiences Withina Capstone Engineering CourseMr. Joseph A. Lyon, Purdue University, West Lafayette Joseph A. Lyon is a Ph.D. student in the School of Engineering Education and a M.S. student in the School of Industrial Engineering at Purdue University. He earned a B.S. in Agricultural and Biological Engineering from Purdue University. His research interests include models and modeling, computational thinking, and computation in engineering education.Dr. Alejandra J. Magana, Purdue University, West Lafayette Alejandra Magana is an Associate Professor in the
work from the periphery to moreactive core participation. Student participation can also be viewed as a form of cognitiveapprenticeship [9] and fits easily with notions of active learning, and problem-based learning[19]. For HFOSS, the community can help provide a support system of experts with a variety ofbackgrounds [28]. In addition, [34] concludes that such collaboration can help reduce theimpact of gender stereotype. 2.1.2 HFOSS in Education. Open source software has been used as a basis for studentsoftware engineering learning since the late 1990’s [31]. A common approach is to utilize aFOSS project as the basis for a capstone project [3, 10]. One obvious way for students toparticipate in a FOSS project is via code contributions
industry in the graduating students, along with the technologyrelated skills. As the students climb up the semester of the concerned program, the studentsgain ample confidence to undertake the more complex capstone project [1] of the last twosemesters intended to integrate several of the competencies related to the different courses.3. MICRO–PROJECT IN ‘COMPETENCY–FOCUSED OBC’"Students showed a higher level of satisfaction with this educational method (micro–project)in comparison to the traditional one" [Ceniceros, 2015]. The Association of AmericanColleges and Universities (AAC&U) and others are tuning the outcome attainment in acompetency model as part of the national focus’ [Carriveau, 2016]. World over, the call forcompetency measures
engineering design studentsAbstractThis evidence-based practice paper describes the use of creativity practice exercises intended toenhance student creativity in a capstone design program. Engineering programs, in general, andcapstone design programs, in particular, that seek innovative conceptual solutions to complexproblems would benefit from techniques to develop and assess student creativity. Therefore, astudy was performed to evaluate two such techniques. Over the first two years of the study,capstone design students in the United States Air Force Academy’s Department of EngineeringMechanics were each assigned to one of 14 teams which received various learning experiences(treatments) intended to enhance individual creativity and design project
Paper ID #25651Work in Progress: The Professional Development Track: A Cooperative Ex-periential Learning Approach to Academic Success for Underserved Engi-neering StudentsDr. Alejandro Gutierrez, University of California, Merced Dr Guti´errez is a teaching professor at UC Merced, where he runs the Capstone Design Program in the School of Engineering. This program is the culminating experience for all students in mechanical engineering, civil & environmental engineering, bioengineering, and materials science. All projects in the UC Merced Capstone Design Program are initiated by industry partners, and the main goal of the
is intrinsically motivated,engaging and enjoyable. Perhaps there are qualities of play which can be leveraged to benefit thelearning process. This line of inquiry brings us to the guiding research questions for this work.Are there aspects of play which can be used to inform pedagogies which improve learningoutcomes and student experience? What aspects of play are important for learning? How canthese be emulated in engineering design projects to create meaningful learning experiences?Literature ContextOne of the primary reasons to pursue play in education is that well-designed playful activities arecommonly associated with enjoyment, engagement and immersion. In their seminal presentationof The Adult Playfulness scale, Glynn and Webster
completing his Navy contract and eventually transferred to San Diego State University (SDSU), San Diego. Needing some hands on learning he applied for a research position at SDSU where he was accepted as a research assistant helping with algal biomass research. In this lab he discovered a love for resource recovery from waste and wastewater treatment when he was given a project to analyze algal feedstock cultivation in wastewater. Upon completing his bachelors, he was accepted to University of South Florida (USF), Tampa, for a Ph. D. program where he researches onsite wastewater treatment for removal of nitrogen species. His research interests revolve around food, water, energy nexus specifically in wastewater treatment
used in allcore course in the non-traditional degree plan.Some flexibility is also provided in the traditional program to allow students to customize theirdegree based on their interests. In doing so, nine semester credit hours are available as electives.However, these electives must come from a predetermined list. Project-based learning is alsoimplemented later in the upper-level course of the degree plan in capstone style courses.Recognition – To build a sense of relatedness and recognition as an engineer for students, thenon-traditional department intentionally seeks to create a sense of community within thedepartment and help students see a connection between their engineering education and theworld around them. Projects and course work
. For over 14 years prior to join- ing TCNJ, he was engaged in medical device technology and product development for the Biosurgery and Regenerative Medicine markets. He coordinates the BME Capstone Senior Project course, wherein stu- dents design and prototype novel medical devices within the Design Control framework, preparing them for development careers in the medical device industry. He earned a BS degree in Chemical Engineering with Certificates in Biomedical Engineering and Personnel Management from the University of Rochester, followed by a Doctorate in Chemical Engineering from Rice University for research investigating fluid dynamic shear force effects on platelet activation and genetic regulation of
transfer of learning from school into professional practice as well as exploring students’ conceptions of diversity and its importance within engineering fields.Dr. Marie C. Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering
. studentswere given assignments that required them to use a makerspace to complete), from introductorycourses that open to non-engineering students to capstone design courses for senior engineeringmajors. The number of courses for which the space was utilized by students was expected toincrease in the next academic year.Data CollectionWe have designed our project using both instrumental and collective case study frameworks[31]. We are currently in our instrumental case study phase, detailing the particulars of eachuniversity program. Following the completion of our instrumental work we will engage in acollective case study framework to determine similarities and differences across programs toform a comprehensive perspective of makerspaces embedded
also acquired and practiced in other contexts, such as seniordesign or capstone projects, the selected approach of focusing on only laboratory or statisticscourses was considered suitable first step for the initial pilot stage.Catalog descriptions were coded for cognitive level of data analysis content based on Bloom’staxonomy [6], with demonstration of understanding coded as 1, application coded as 2, andanalysis coded as 3. Note that no higher levels of Bloom’s taxonomy were identified in anycourse description. Therefore, these three levels were used to assign a quantitative rank to eachcourse. For example, a Statistical Topics in Electrical Engineering course with the description,“This course examines the use of probability and statistical
. Impact of engineering on society and the environment 10. Ethics and equity 11. Economics and project management 12. Lifelong learningAs with other accreditation boards, such as ABET, it is the engineering program seeking accreditationthat must devise the outcomes-based teaching and assessment measures to facilitate students’ learningin these areas1. To some extent, thus far in Canada, due to the pressures of accreditation, approaches tothis problem could be generalized as efforts to teach and assess the CEAB graduate attributes byindividually and equitably attending to each attribute on the list, despite acknowledgment by theWashington Accord that whilst all attributes are important, they should not necessarily be appointedequal weight2
University. Her research interests include design education research at K-16 levels.Dr. Michael L. Philpott, University of Illinois, Urbana-ChampaignJulia Laystrom-Woodard, University of Illinois, Urbana-ChampaignDr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Teaching Associate Professor and Director of Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she
. Prior to beginning her PhD, she worked for almost 7 years at Stanford University as a Certified Athletic Trainer.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and associate professor at the University of New Mexico in the Organization, Information & Learning Sciences program and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutionizing Engineering Departments project. She was selected as a National Academy of Education / Spencer Post- doctoral Fellow and a 2018 NSF CAREER awardee in
Columbia University and the Cooper Union in New York City. She received her PhD from Columbia University in 2006, where her research focused on the mechanical and frictional properties of articular cartilage. Dr. Basalo ’s teaching experience includes Thermodynamics, Computer Graphics, Materials Science and laboratory courses. Since 2015 she has been actively involved in the University of Miami College of Engineering’s ”Redefining Engineering Education” strategic plan on educational innovation. As part of this plan, Dr. Basalo worked with 2 other faculty members to organize inaugural Senior Design Expo in May 2017, an exposition where over 200 senior students showcased their Capstone projects to the University of Miami
gives us a snapshot of the diversity of thecurrent student body prior to fully implementing programmatic changes that are planned as part of theRED project. We plan to collect data each year to assess how well our goals of increasing diversity,creating a culture of inclusivity, and increasing the persistence of diverse types of students in the programare being met. This information will inform the design of other activities such as a mentoring program,capstone design, and supporting mid-year content courses and sophomore “springer” courses. Insightsrevealed in interviews have identified evaluation components for these courses, addressing specific issuesof bias, faculty feedback, inclusive teamwork practices and professional skills. Future work
University’s Board of Trustees. At Virginia Tech, he also serves as Graduate Research Assistant in the Department of Engineering Education. His research interests are: Higher Education Finance and Administration; STEM Education; Migration and Immigration issues in education; and Quality Assurance.Mr. Tahsin Mahmud Chowdhury, Virginia Tech Tahsin Mahmud Chowdhury is a PhD student at Virginia Tech in the department of Engineering Edu- cation. Tahsin holds a BSc. degree in Electrical and Electronics Engineering from IUT, Dhaka and has worked as a manufacturing professional at a Fortune 500 company. He is actively engaged in differ- ent projects at the department involving teamwork, communication and capstone design with a
paired F/T-LEARN cohort (FTIC students only for F-LEARN comparisongroup, transfer students only for T-LEARN comparison group); 2) first academic term ofenrollment is similar to the paired F/T-LEARN cohort; 3) declared as STEM in their first term(see Appendix A for a list of CIP codes that map to STEM majors for this project); 4) have notparticipated in another Living-Learning Community or other Enriching Learning Experience(e.g. honors in the major, National Merit Scholars, mentoring programs, etc.); and 5) have acumulative GPA similar to the F/T-LEARN cohort (high school GPA for FTIC; previousinstitution GPA for transfer students), which was done by computing the minimum andmaximum high school GPA or previous institution GPA for the F/T-LEARN
Operations experiments, and incorporating Design throughout the Chemical Engineering curricu- lum. She currently works as a freelance Engineering Education Consultant and Chemical Engineer. She is the Project Manager for NSF grant #1623105, IUSE/PFE:RED: FACETS: Formation of Accomplished Chemical Engineers for Transforming Society, for which she is advising and coordinating assessment.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and associate professor at the University of New Mexico in the Organization, Information & Learning Sciences program and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is
University in 2015.Dr. Soheil Fatehiboroujeni, Indiana-Purdue University Soheil FatehiBoroujeni received his Ph.D. in Mechanical Engineering from the University of California, Merced in 2018. As a postdoctoral researcher at Purdue University, School of Engineering Education, Soheil is working on a multi-institutional project characterizing governance processes related to change in engineering education, and pursuing other research interests in epistemology and design, among other philosophical topics in engineering education.Dr. Jennifer Karlin, Minnesota State University, Mankato Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial
Paper ID #25506Student Perceptions of Interpersonal Skills Intertwined in an EngineeringClassroomMiss Carmen Angelica Carrion, Georgia Institute of Technology Doctoral studies in Science Education. Specifically in informal settings and through the application of problem based and project based learning.Prof. Joseph M. LeDoux, Georgia Institute of Technology Joe Le Doux is the Associate Chair for Undergraduate Learning and Experience in the Department of Biomedical Engineering at Georgia Tech and Emory University. Dr. Le Doux’s research interests in engineering education focus on problem-solving, diagrammatic reasoning, and on
capstone. Her degrees in counseling, English and psychology complement her varied research interests in teaching and learning which are currently focused on introversion and collaborative learning, blended learning, technology, and APA style. c American Society for Engineering Education, 2019 Perception versus Reality: Skill Perceptions in First-Year Engineering StudentsThis Research study is predicated on the fact that engineering students often enter the field notfully understanding the reality of the roles and responsibilities of an engineering professional.Not coincidentally, engineering is oft-cited as a major that students do not remain in. Koenig [1
Sciences, 1st ed. Elsevier B.V., 2009.[15] I. van de Poel and D. E. Goldberg, Eds., Philosophy and Engineering, 2nd ed. 2010.[16] A. J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A Review of Literature on Teaching Engineering Design Through Project-Oriented Capstone Courses,” J. Eng. Educ., vol. 86, no. 1, pp. 17–28, 1997.[17] J. E. Froyd, P. C. Wankat, and K. A. Smith, “Five major shifts in 100 years of engineering education,” Proc. IEEE, vol. 100, no. SPL CONTENT, pp. 1344–1360, 2012.[18] J. Lave, “Chapter 4 Situating Learning in Communities of Practice,” Perspect. Soc. Shar. Cogn., vol. 2, pp. 63–82, 1991.[19] E. J. H. Spelt, P. A. Luning, M. A. J. S. van Boekel, and M. Mulder, “A multidimensional approach
engineering education research interests focus on community engagement, service-based projects and examining whether an entrepreneurial mindset can be used to further engi- neering education innovations. He also does research on the development of reuse strategies for waste materials.Dr. Daniel Knight, University of Colorado, Boulder Daniel W. Knight is the Program Assessment and Research Associate at Design Center (DC) Colorado in CU’s Department of Mechanical Engineering at the College of Engineering and Applied Science. He holds a B.A. in psychology from Louisiana State University, an M.S. degree in industrial/organizational psychology and a Ph.D. degree in education, both from the University of Tennessee. Dr. Knight’s
because “everything's very tied together and it's better to have a wide base of knowledge.”Within engineering contexts, Caleb recognized reflection as necessary to making sure projectsteps were documented and that students were reflecting on how they have grown through aproject because it is one of the things he has been asked to do in his classes. When asked abouthis fellow students’ reactions to professors prompting students to reflect, he said, “when it comesto non-engineering things, I’ve certainly witnessed if not experienced it myself, why are wedoing this.” Caleb suggested students tend to focus on the end product rather than the means andprocesses of a project. He hypothesized this focus on the end product, could be related to someof the
Paper ID #26328Facilitating Transfer Student Success in an Engineering Baccalaureate Pro-gramDr. Nena E. Bloom, Northern Arizona University Dr. Nena Bloom is an evaluator and education researcher at the Center for Science Teaching and Learning at Northern Arizona University. The primary area of her work is evaluating STEM education projects that focus on opportunities for, and retention of, K-20 students in STEM areas, majors and fields. She also conducts education research focusing on questions about professional development for educators and how educators support student learning in STEM.Mrs. Jennifer Johnson, Northern
(2007) to an engineering problem frame of reference and the physical posed to them (the Midwest location codes, with kappa values of .748 Floods problem). and .746 respectively.”Kong, Douglas, In the “qualitative study of “The kappa values were found to be 100%Rodgers, Diefes- student team projects,” the for the definition category, 93% for theDux, & research team used constant evaluation category, and 84% for theMadhavan (2017) comparative analysis to comparison category.” analyze student work products, specifically their