Paper ID #38328The Curriculum Puzzle: Developing and Integrating Materials to Localizea CurriculumNrupaja Bhide, Purdue University, West Lafayette Nrupaja is a graduate researcher at the School of Engineering Education at Purdue University. She is interested in exploring how local knowledge can be centered in STEM curricula. ¨Ya˘gmur Onder, Purdue University, West Lafayette ¨ Ya˘gmur Onder is an undergraduate at Purdue University majoring in Mechanical Engineering and minor- ing in Global Engineering Studies. She’s involved with DeBoer Lab in Purdue’s School of Engineering Education research where her
engineeringcurriculum. To add to this gap in literature, this paper analyzes quantitative responses of genderand sexual minority students’ perceptions of the engineering curricula from the survey conductedin 2018.Relevant LiteratureThe predominant normative marker of science and scientists in the U.S. has historically andcontinues to be based on White cisgender male perspectives [1]–[7]. Not surprisingly, thishomogenous and heterogenous perspective leads to pedagogical practices in which minoritizedstudents underperform compared to when innovative pedagogical models are used, such asflipped classrooms [8], [9]. This long-standing conceptualization of science and scientists alsoresults in an engineering curriculum that deems “issues of communication, justice
hop-inspired pedagogics and its intersection with design thinking, computational media- making, and integrative curriculum design.Sabrina Grossman, Georgia Institute of Technology I am currently a Program Director in Science Education at Georgia Tech’s Center for Education Integrat- ing Science, Mathematics, and Computing (CEISMC), which is a K-12 STEM outreach center for the university. I am working on several exciting projects inc ©American Society for Engineering Education, 2023 Music, Coding, and Equity: An exploration of student and teacher experiences in decoding messaging and discussing equity with the Your Voice is Power curriculum
engineering students respond to hidden curriculum as well as how Latinx contingent faculty experience workplace inequities in engineering. He received his Ph.D. in Language, Literacy, and Culture in Education from the University of Massachusetts-Amherst. Dr. Downey focuses on critical qualitative inquiry with a discerning eye toward humanizing and culturally sustaining pedagogies.Idalis Villanueva Alarc´on, University of Florida Dr. Villanueva is an Associate Professor in the Engineering Education Department at the University of Florida. Her multiple roles as an engineer, engineering educator, engineering educational researcher, and professional development mentor for underrepres
Paper ID #37342Talking Tech: How Language Variety in Engineering Curriculum InstructionCan Ease Delivery and Engage StudentsIngrid Scheel, Oregon State University Ingrid Scheel is a Project Instructor at Oregon State University. She works to teach from an integrated sociotechnical perspective in engineering science and design courses. Her focus is systems engineering and program management. Scheel has experience in small business strategic planning and risk assessment, designing and deploying fiber optic sensors and sensing systems, prototype development, instrumentation, data acquisition and analysis, and reporting
undergraduate levels. ©American Society for Engineering Education, 2023 Indigenizing the Artificial Intelligence (AI) Programmed Engineering Education Curriculum, Challenges and Future PotentialsAbstract – In this Work-In-Progress (WIP) paper, the integration of Indigenous ways ofknowing is explored with a focus on pedagogy that is technologically enhanced with artificialintelligence (AI). An overview of AI programs, providing their key methods of decision makingis presented. The technological, educational/philosophical challenges of integrating Indigenousways of knowing considering AI programs are then discussed from the perspective of a non-Indigenous researcher
Virginia. She has a BS in Chemical Engineering from The Ohio State University .Miss Sarah Catherine Lilly, California State University, Channel Islands Sarah Lilly is a PhD student in the Department of Curriculum, Instruction and Special Education at the University of Virginia. She holds a B.S. in Mathematics and English and an M.A.Ed. in Secondary Education from The College of William and Mary. Her rese ©American Society for Engineering Education, 2023 Integrating technical and social issues in engineering education: A justice-oriented mindsetAbstractThe problem-solving skills of engineers are necessary to address modern, global, sociotechnicalissues (e.g
Paper ID #43435Anti-racism, Inclusion, Diversity and Equity in Database Curriculum ThroughGroup Research Projects on Historical, Social and Ethical Database RelatedTopicsDr. Ioulia Rytikova, George Mason University Ioulia Rytikova is a Professor and an Associate Chair for Graduate Studies in the Department of Information Sciences and Technology at George Mason University. She received a B.S./M.S. and Ph.D. degrees in Automated Control Systems Engineering and Information Processing. Her research interests lie at the intersection of Data Science and Big Data Analytics, Cognitive and Learning Sciences, Educational Data Mining
the students were exposed toin the three different groups. It also discusses recommendations for future changes that could bedone to better include equity discussions and assessments in the curriculum. The paper also stateshow this could be modified for any undergraduate program. IntroductionEngineers play an essential and unique position in the society as their influence over resources willhave long-term consequences on the communities they service. They are uniquely placed toaddress systemic obstacles, but to do so, they need to have a nuanced grasp of social aspects. Toaccomplish this, engineering education must include topics that investigate equality, diversity, andinclusion. (EDI). Students will be able to gain a grasp of how their
to develop an inclusive curriculum and classroom. The students of color in these classrooms also tend to do better academically in the field, in comparison to their peers who do not have such an opportunity to learn in this manner. Thus, it is imperative to examine how professional development experiences can be transformative learning experiences for STEM faculty, and what viewpoints, if any, these faculty bring into their learning of topics related to access, diversity, equity, and inclusion for students of color. With the goal of further uncovering the ways in which inclusive teaching and learning practices can become an integral part of STEM classrooms, this paper presentation provides a framework for
design with respect to disability inhuman factors engineering disciplines [13]. Dong describes challenges for integrating inclusivedesign into curriculum, namely class size limitations and user integration into course materials[14]. In this practice paper, human centered design is the design framework chosen as it allowsfor a user-first approach to engineering design, often missed in undergraduate curriculum, whileproviding a scaffolding for connecting the implications of engineering to social justice.2 Course Design2.1 Instructor Team PositionalityThe instructor team was comprised of two individuals: a faculty member and an instructionaldesigner. The faculty member is an assistant professor of mechanical engineering. She primarilyteaches
. Her research interests include the integration of fine arts and engineering and developing effective methods to teach transport phenomena.Ms. Danielle Gan, University of Connecticut Danielle Gan (she/her) is a senior undergraduate in the Department of Chemical & Biomolecular Engi- neering at the University of Connecticut with a minor in Global Environmental Change. She is currently assisting Dr. Kristina Wagstrom with research on the design and testing of an unmanned aerial vehicle that can monitor particulate matter. Danielle is a member of Citizens Climate Lobby, a grassroots envi- ronmental group that aims to influence climate policy. She is also a member of the Society of Women Engineers (SWE), as well
economic structures. “Anti-toxics activists, through the process of local fights against polluting facilities, came to understand discrete toxic assaults as part of an economic structure in which, as part of the ‘natural’ functioning of the economy, certain communities would be polluted.” (Cole and Foster, 2000 p. 23).In the 1980s, civil rights leaders worked with the anti-toxics movement to conduct economicanalyses through their understanding of structures. In turn, anti-toxics leaders brought in the civilrights activists’ racial critiques (Cole and Foster, 2000). Together, these integrations ofknowledge and methods grew the environmental justice movement.Traditional Environmental MovementThe initiatives and efforts of
that equipsengineering students with core concepts and methodological tools necessary to analyze the roleof engineering in society, using a Human Rights framework. This paper explores learningoutcomes in an existing course within this curriculum (i.e., “Engineering for Human Rights”)by analyzing original exit survey data from enrolled students. Our survey instrument integratedNew Ecological Paradigm (NEP) statements to assess variation in perceptions of the usefulnessof the course content as it relates to sustainability. The findings of this study have implicationsand suggestions for designing interdisciplinary curricula that integrate engineering,sustainability, and human rights in engineering education.Keywords – Human Rights framework
Paper ID #36751Using Academic Controversy in a Computer Science UndergraduateLeadership Course: An Effective Approach to Examine Ethical Issues inComputer ScienceMariana A. AlvidrezDr. Elsa Q. Villa, University of Texas, El Paso Elsa Q. Villa, Ph.D., is a research assistant professor at The University of Texas at El Paso (UTEP) in the College of Education, and is Director of the Hopper-Dean Center of Excellence for K-12 Computer Science Education. Dr. Villa received her doctoral degree in curriculum and instruction from New Mexico State University; she received a Master of Science degree in Computer Science and a Master of
machinery, basic electrical circuits, and linear electronics. He was also one of three faculty responsible for organizing and conducting the capstone design course for the EMET program. Ron received a baccalaureate degree in Electrical Engineering from the Georgia Institute of Technology in 1971 and an M.S. degree in Electrical Engineering from the California Institute of Technology in 1973.Ms. Lara L. Sharp, Springfield Technical Community College Ms. Sharp has a BS in chemical engineering, an MBA, and is currently working on a MS in Industrial engineering. She has worked in both secondary and higher education teaching and developing curriculum and is currently Program Director of Engineering Tech
Engineering from Rose-Hulman Institute of Technology in 2005. He spent 7 years as a part of a lecturer team at Arizona State University that focused on the first-year engi- neering experience, including developing and teaching the Introduction to Engineering course. Currently, he is an assistant professor at Rose-Hulman Institute of Technology in the Mechanical Engineering de- partment. His teaching focus is in fluid mechanics and thermodynamics but has also taught classes such as numerical methods and introduction to engineering. His interests include student pathways and mo- tivations into engineering and developing lab-based curriculum. He has also developed an interest in non-traditional modes of content delivery
assumptions regarding certain groups or communities” (p. 1). In addition to framing student underperformance as an individual or familial problem, deficit perspectives obscure how educators and systemic oppression undermine the success of minoritized student populations. (p. 6)In response, anti-deficit teaching practices center on the effective use of transformativeeducational pedagogies that aim to create equitable learner spaces that integrate the voices ofthose traditionally marginalized [2]. For example, Graham et al. [19] communicated a“persistence model” in which the acquisition of knowledge and professional skills (i.e., student’slearning) along with student identification of (connecting) what they are studying to
integrated fashion in student knowledge development. The authors adopted thislearning taxonomy to form the foundation of the work presented in this paper: ● Foundational knowledge – includes the building blocks of the disciplines being studied. In the framework presented, this is addressed by using assignments that allow students to demonstrate a basic understanding of societal rights in terms of what is available in the built environment, to identify inequities in infrastructure, and how they are propagated. ● Application – students use the foundational knowledge acquired in the initial lessons of a course, or over the curriculum, to start designing solutions to address existing problems in infrastructure. As students work
education. Byexploring local environmental justice issues and emphasizing the necessity of integrating theseissues into the curriculum, we can prepare the next generation of engineers to address real-worldchallenges and engage in equitable problem-solving. Given the profound implications ofengineering solutions on both environmental sustainability and societal well-being, EJE stands asa pivotal bridge between educators and students, fostering meaningful connections by exploringlocal environmental justice issues. Many educators struggle to effectively incorporate environmental justice topics intoengineering education [1], [2]. K–16 education discourses and curricula frequently overlookenvironmental justice issues, neglecting to highlight the
Engineering in 2016. Her research interests are in areas of sustainable design, including biomimicry and adaptability in structural, city, and regional applications. Additionally, her scholarship includes topics such as curriculum development, contextualization of fundamental engi- neering sciences and integrating social justice into engineering education. She earned her MS and PhD in Civil Engineering from Clemson University, and her BS in Engineering from Harvey Mudd College.Prof. Mark A. Chapman, University of San Diego Mark Chapman is an assistant professor at the University of San Diego in the Department of Integrated Engineering. His interests lie in the fields of skeletal muscle mechanics, muscle disease, exercise physi
Paper ID #37115Piloting a Socio-Culturally Responsive Peer-Mentoring Program to PromoteHLX+ Students’ Sense of Belonging in Engineering Education: LessonsLearned from Year 1Dr. Cole Hatfield Joslyn, Northern Arizona University Cole Joslyn is an Assistant Professor in the Department of Mechanical Engineering at Northern Arizona University and director of THE Education Lab: To Humanize Engineering Education which emphasizes promoting student growth/development in multiple dimensions, integrating inclusive and emancipatory pedagogy/teaching practices, and reconciling the social and technical nature of engineering. His current
-basedbystander training; self reflections on microaggressions and implicit bias; and in-class teamexercises and discussions on the intersection of power dynamics, team interactions, anddiscrimination, as well as strengthening empathy though a recognition of societal privilege andeconomics factors. Throughout these trainings, activities, and discussions, an emphasis is placedon development of concrete actions that students can take within their current and future teams topromote an inclusive, collaborative, and psychologically safe environment for all members.As implementation of these active learning techniques to DEI concepts within the seniorundergraduate aerospace capstones is a relatively new update to the curriculum, development ofmetrics to gauge
andintellectual development such as that exemplified by a liberal-arts curriculum [13]. Debatesbetween these positions can consume considerable oxygen in department meetings, butregardless of one’s beliefs about the purposes education should serve, the technologies createdby engineers continues to make systems larger and more interconnected.In this practice-focused paper we report on introducing system maps in a design course to givethird-year engineering students practice using tools that enable causal connections of their workto social and global issues. Over the five semesters the course has been taught an ongoingchallenge has been having engineering students who are acculturated to quantitative and linearmethods of problem solving meaningfully
institute of Technology. Sriram received a B.E degree in Computer Science and Engineering from the University of Madras and M.S and Ph.D. degrees in Computer Science from Indiana University. During his time at Rose-Hulman, Sriram has served as a consultant in Hadoop and NoSQL systems and has helped a variety of clients in the Media, Insurance, and Telecommunication sectors. In addition to his industrial consulting activities, Sriram maintains an active research profile in data science and education research that has led to over 30 publications or presentations. At Rose-Hulman, Sriram has focused on incorporat- ing reflection, and problem based learning activities in the Software Engineering curriculum. Sriram has
engineering decision-making, they are led to solving problems with atechnical perspective that leaves out ethical or environmental implications until the end, if atall. Without integration between the social and technical dimensions of engineering, theengineering curriculum will leave students to reinforce existing racial and environmentalinjustices rather than cultivating a critical understanding of the social, political, and economiccontext in which they will be engineers. Additionally, revising an engineering course to modelsociotechnical fluency and design has the potential to attract and retain students who havehistorically been excluded from engineering and are still not served by traditional engineeringcurricula (Faulkner, 2007; Litchfield
Facultad de Ingeniería, Universidad El Bosque 2 Departamento de Ingeniería Industrial, Universidad de los Andes 3 Departamento de Ingeniería de Sistemas y Computación, Universidad de los AndesAbstractScience, Technology, Engineering, and Mathematics (STEM) is an approach that integrates scienceand mathematics education through the development of scientific practices, technology,engineering design, and mathematical analysis. Although governments in North American andEuropean countries have invested in promoting the study of STEM disciplines, educationalprograms for migrants have been offered for adults, and very few programs for children, which areinvisible, downplaying the
, California Polytechnic State University, San Luis Obispo Jennifer Mott earned her Ph.D. from the University of Illinois, Urbana-Champaign. She is currently an Assistant Professor in Mechanical Engineering at California Polytechnic State University, San Luis Obispo. Her research interests include Thermal Comfort, using Team Based Learning in engineering courses and improving teaching/learning for engineering students. American c Society for Engineering Education, 2021 Implementing Social Justice Projects in Thermal System and Mechanical Design CoursesAbstractTopics and assignments related to social justice were integrated into thermal
supports Engineering and Science undergraduate students as they serve as camp counselors in his work at the Caruth Institute for Engineering Education. He directly manages the deployment of STEM integrated activities that surface Engineering to Middle and High School students in the Dallas area in an informal learning environment through the Hammon Engineering camps. He is also engaged in outreach programs that are seeking to serve underrepresented populations in Engineering. In his program manager role at the Institute, he contributes in fostering relationships and developing STEM activities for Voices of Hope and Jubilee Park. He is also part of the Maker Education project as his previous experiences developing
issues into the existing curriculum, rather than create an add-on for students.Courses taken for the Option all must be taken for a grade (not pass/fail) and in the followingthree areas: 1. Impact of Technology (1 course): These types of courses help students focus on how technology impacts marginalized communities. Examples of such courses are courses entitled “Race, Science, and Justice” and “Rehabilitation and Robotics.” These courses allow engineers to assess the needs of society and its marginalized communities and develop strategies to ensure that future technology solutions consider them. 2. Community Impact (1 course): These courses help students to develop and apply their knowledge of the interaction between