EECS Department. His current research activities include nanomagnetics/spintronics, graphene electron- ics, nanophotonics, and nano-electromechanical systems. c American Society for Engineering Education, 2020 Career Development Impacts of a Research Program on Graduate Student and Postdoc MentorsAbstract—This evidence-based practice paper explores how graduate students and postdocsbenefit from serving as mentors to undergraduate research interns. Utilizing three years ofqualitative data from 38 mentors, our findings indicate that mentors feel better prepared forfuture faculty careers as they gain skills in project management, supervision, andcommunication. This paper
years compared to earlier years as reflected in the sample data shownin Table 3, and we believe this is largely due to increased faculty engagement and positivityrelated to EML. Table 3 Average Student Ratings Related to E-learning Modules Question 2015* (n = 98) Fall 2020* (n = 133) The instructor reinforced what you learned in the e-learning 3.58 3.95 module through an assignment or a project The assignment or the project was effective in reinforcing 3.44 3.91 what you learned
Fellow of the Society for Industrial and Organizational Psychologists.Ms. Jacqueline Gilberto, Rice UniversityProf. Stephen P. Mattingly, University of Texas at Arlington STEPHEN MATTINGLY is a Professor in Civil Engineering at the University of Texas at Arlington. Previously, he worked at the Institute of Transportation Studies, University of California, Irvine and Uni- versity of Alaska, Fairbanks. His most recent research projects address a variety of interdisciplinary topics including developing an app for crowd-sourcing bicycle and pedestrian conflict data, transporta- tion public health performance measures, policy and infrastructure improvements resulting from bicycle and pedestrian fatality crashes, linking
, learning, outreach and diversity of engineers, along with instructional innovation in biomedical engineering. Her current research looks at applying human-centered design thinking to approaching challenges in teaching engineering. Dr. Joshi is actively involved in educational entrepreneurship projects, STEM popularization activities and making engineering accessible to underrepresented high school students in the U.S. and India.Dr. Jason R White, University of California, Davis Dr. Jason R. White is a faculty member in the Department of Chemical Engineering at the University of California, Davis. Dr. White has been at UC Davis since 2015 and he has been an instructor of several un- dergraduate chemical engineering
currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutionizing Engineering Departments project. She was selected as a National Academy of Educa- tion / Spencer Postdoctoral Fellow and a 2018 NSF CAREER awardee in engineering education research. Dr. Svihla studies learning in authentic, real world conditions, specifically on design learning, in which she studies engineers designing devices, scientists designing investigations, teachers designing learning experiences and students designing to learn.Ms. Madalyn Wilson-Fetrow, University of New MexicoDr. Pil Kang, University of New Mexico Sung ”Pil” Kang is an assistant professor at the University of New Mexico. His
Paper ID #30116Analyzing Student Achievement to Measure the Effectivenss of ActiveLearning Strategies in the Engineering ClassroomSarah Hoyt, Arizona State University Sarah Hoyt is currently the Education Project Manager for the NSF-funded JTFD Engineering faculty development program. Her educational background includes two Master’s degrees from Grand Canyon University in Curriculum and Instruction and Education Administration. Her areas of interest are in student inclusion programs and creating faculty development that ultimately boost engagement and per- formance in students from lower SES backgrounds. Prior to her role
) convenient sampling procedure.The administered survey consisted of eight questions for Cohort 1 and Cohort 2: Question 1. Prior to joining the group, did you engage in research efforts? Question 2. If not, did you discuss this with the faculty advisor? Question 3. Did you meet with the faculty advisor after you were accepted into the group? Question 4. Did the faculty advisor respond in a pleasant manner? Question 5. If so, did the faculty advisor give you a general overview of the current project? Question 6. At any point did you talk (or email) the faculty advisor about graduate school or internship opportunities? Question 7. If so, have you applied for any internship opportunities
supportive and structured teachingpractices and hindered in chaos and controlling ones.This paper uses SDT to analyze the approaches taken by faculty at HSIs to promote intrinsicmotivation through intentionally seeking to fulfill their students’ physiological needs ofcompetence, relatedness, and autonomy in their learning environment. We also seek to observewhich motivating styles are adopted by faculty and their interaction in construct fulfillment. Figure 2. Graphical representation of Alterman’s Circumplex model adapted from [2]MethodsThis study is part of a larger mixed-methods research project that focuses on engagingengineering educators at HSIs to share non-obvious needs and existing successes at theirinstitutions. As previously
Paper ID #28894From Q&A to Norm & Adapt: The Roles of Peers in Changing Faculty Be-liefsand PracticeAmber Gallup, University of New MexicoDr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and associate professor at the University of New Mexico in the Organization, Information & Learning Sciences program and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutionizing Engineering Departments
, and through communities of practice.Two outcomes of the systems thinking model from this work include (i) a faculty fellowship program torecognize and reward faculty development of transformational projects and (ii) self-paced learning structuresto encourage emergent ideas. This paper addresses the first steps for the following research questions:• Does a design systems thinking approach create a responsive model for a community-driven faculty development program? Does this model adapt to community needs and individual faculty career needs?• Will a design systems thinking approach support the community development of a sustainable model for faculty development that thrives outside of the funding organization?This project is ongoing
, thestudents reported more negative experiences with their classes after the move to remote learningas compared to positive experiences with 32 of the 39 students reporting at least one negativeexperience. The students had many comments related to course content including project work inthe Spring 2020 semester (28 students), online tests and exams (27 students), lab issues (23students) and PowerPoint use and issues (13 students). Also, approximately one-third of thestudents responded that their instructors did not respond to emails from students. Most studentsshowed appreciation for the efforts that faculty made in the quick transition to remote learning.However, the students expressed concerns about the organization of the classes (13 students
in Higher Education and Student Affairs from New York University, and his Ed.D. in Educational Leadership from University of Southern California.Dr. Jianyu ”Jane” Dong, California State University, Los Angeles Jianyu Dong is a professor in electrical and computer engineering and currently serves as the Associate Dean for the College of Engineering, Computer Science, and Technology at Cal State LA. Her area of expertise is video compression/communication, multimedia networks, QoS, etc. With a strong passion in Engineering Education, she has been engaged in multiple funded projects and initiatives to increase the participation and success of students from undeserved, low-income communities in engineering areas.Dr
relates toimplementation of evidence-based teaching practices, and implementing new practices helpsgenerate additional supports [9]. Examples of support include a department's culture andemphasis on teaching, faculty's desire for improved student outcomes, professional developmenttraining, access to active learning classrooms, and interaction with pedagogy specialists. TheFLC members aimed to provide support to their CoE faculty colleagues by creating a series ofevidence-based mini-modules on inclusive teaching and mentoring practices. The purpose ofthis paper is to describe the creation, implementation, and assessment of these mini-modules.GoalsThe goals of this project were to1. Disseminate evidence-based, inclusive teaching and mentoring
confident that many aspects can be generalized into the general academic settingregardless of research disciplinary focus area.Tuckman’s 5 Stages of Team Development [1], Figure 1, is very much applicable for teams thatare required to work together versus teams that choose to work together. As educators, wecommonly see these stages play out in group design projects, especially when it comes to the“storming” stage when students start complaining about their peers and show frustration towardsthe inability to be productive as a group. Tuckman’s model offers a good foundation, yet theauthors set out to propose a modified framework that describes the stages that occur when people“choose” to work together, versus Tuckman’s model which describes the
distributed. 2. A workshop for faculty in the College of Engineering (COE) that was conducted during every departments’ regular faculty meetings. 3. Discussion sessions were conducted with faculty who taught project-based courses. 4. Informal lunch sessions to encourage sharing of effective strategies were proposed.Each component of this approach is described in greater detail below.1. Resource (‘One Pager’)An important part of the initiative was the creation of a detailed resource which containedinformation in the form of organized steps on how to make a traditional classroom moreinclusive. The authors initially planned on creating a one-page resource but quickly realized thedifficulty in this task due to the volume of information that
Paper ID #34459Lessons Learned: College Student Surveys as a Professional DevelopmentToolDr. Dick Apronti, Angelo State University Dick Apronti is an assistant professor at Angelo State University. He teaches transportation engineering courses, engineering graphics, and plane surveying. His research interests are in transportation safety and planning. Dick Apronti also has interests in projects that improve access to higher education and college retention for minorities and under-represented groups. American c Society for Engineering Education, 2021Lessons
from themes ofprofessional engineering issues and utilize these perspectives to build frames as ways of seeingand understanding a situation. The course was project and discussion based with biweeklyreflections and course readings. The primary pedagogical element utilized collaborative learningsessions based on a flipped-classroom model, where students would read unique articles to gainnew perspectives, come prepared to in-class sessions to share their perspectives, and engage inproblem framing of a complex situation. Therefore, the course centered around these interactive,discussion-based, collaborative learning sessions to promote engagement and active learning.Course Design Considerations and Lessons Learned The lessons learned are
example were conductedin-person (before the Covid-19 pandemic), the process can be adapted to online environmentsusing tools (such as Jamboard, Kumu, MURAL, InVision, and Stormboard) andvideoconferencing platforms that provide small group interactions.During the lightning talk, the audience will be invited to consider how systems thinking andsystems mapping might be useful tools in their work and contexts to engage stakeholders andcollect information, or for other purposes. The author invites conversations to share ideas anddiscuss questions about potential applications and implementation.AcknowledgmentsThis project is supported by a Pott College Innovation seed award at the University of SouthernIndiana (USI). This research is conducted under
on Undergraduate Research (CUR) Faculty Mentoring Award in Mathematics and Computer Science.Dr. Ann C. Gates, University of Texas at El Paso Dr. Ann Quiroz Gates is the Vice Provost of Faculty Affairs at the University of Texas at El Paso. She holds the AT&T Distinguished Professorship and served as the Chair of the Computer Science Depart- ment (2005-2008 and 2012-2020) and Associate VP of Research and Sponsored Projects (2008-2012). Gates is the Executive Director of the Computing Alliance for Hispanic-Serving Institutions (CAHSI), an NSF National INCLUDES Alliance promoting the importance of inclusion and equity in advancing innovation and discovery. She also directs the NSF-funded CyberShARE Center
c American Society for Engineering Education, 2020 Designing a Streamlined Workshop for STEM-H Faculty Engaged in the Scholarship of Teaching and LearningIntroductionAcross the disciplines encompassed by STEM and Health Sciences (STEM-H), there has beengrowing interest among these disciplinary faculty towards learning more about how to conducteducation research within their disciplines. In a recent national effort, NSF has called for“Building Capacity for Science, Technology, Engineering, Mathematics (STEM) EducationResearch” via its program solicitation 20-521. Projects are supported that build STEM-H facultycapacity to carry out high quality STEM education research that will enhance the nation’s
developers.Faculty Development as Interdisciplinary Work In the work of faculty development, faculty developers bring their own disciplinarybackgrounds to their roles, collaborate across disciplines, and operate at disciplinary borderswithin institution-wide and discipline-specific academic units [1]. In this project, facultydevelopment is framed as interdisciplinary work where faculty developers work to integratemultiple perspectives towards creating educational solutions and supporting faculty and graduatestudents in the development of their teaching and learning practice. Within theseinterdisciplinary interactions, challenges and conflict may arise because academic disciplineshave different ways of seeing problems and different methods for problem
Attack Generation Environment (ISEAGE) test bed project. He has given over 75 presentations in the area of computer security and has testified in front of the U.S. Senate committee of the Judiciary on security issues associated with peer-to-peer networking. He has served as an ABET program evaluator representing IEEE for 10 years. He is a Fellow of IEEE and received the IEEE Educational Activities Board Major Educational Innovation Award in 2012 for his work in teaching information assurance to students of all ages.Dr. Lisa M. Larson Ph.D., Iowa State University Dr. Larson is a professor in the department of psychology. She has examined Self Determination Theory as a framework to explain how the environment impacts
Paper ID #32874From Lack of Time to Stigma: Barriers Facing Faculty at Minority-ServingInstitutions Pursuing Federally Funded ResearchDr. Rocio C. Chavela Guerra, American Society for Engineering EducationMs. Carolyn Wilson, Southeastern Universities Research Association Carolyn Wilson is the Special Projects Manager for the Southeastern Universities Research Association (SURA). Before moving into scientific contract management work, she has focused her research on the changing dynamics of the STEM workforce, as well as the postsecondary education and development of the future STEM workforce. Prior to SURA, Carolyn worked as a
participation in higher education, and the educational attainment and schooling experiences of Mexican descent youth in the mid-20th century.Dr. Valerie Martin Conley, University of Colorado at Colorado Springs Valerie Martin Conley is dean of the College of Education and professor of Leadership, Research, and Foundations at the University of Colorado Colorado Springs. She previously served as director of the Center for Higher Education, professor, and department chair at Ohio University. She was the PI for the NSF funded research project: Academic Career Success in Science and Engineering-Related Fields for Female Faculty at Public Two-Year Institutions. She is co-author of The Faculty Factor: Reassessing the American
of Mexican descent youth in the mid-20th century, higher education student success, and faculty mentoring programs.Dr. Valerie Martin Conley, University of Colorado at Colorado Springs Valerie Martin Conley is dean of the College of Education and professor of Leadership, Research, and Foundations at the University of Colorado Colorado Springs. She previously served as director of the Center for Higher Education, professor, and department chair at Ohio University. She was the PI for the NSF funded research project: Academic Career Success in Science and Engineering-Related Fields for Female Faculty at Public Two-Year Institutions. She is co-author of The Faculty Factor: Reassessing the American Academy in a
Virginia Tech (VT) in 2018. She received her bachelor’s and masters in Computer Science and Engineering. Her research is at the intersection of Engineering Ed- ucation and Computing Education Research and focuses on Cyberlearning and engagement, Curriculum development, assessment and evaluation, and experiential learning including undergraduate research. She has been teaching in active learning environments, such as project-based learning and flipped classrooms. She aims to bring in engineering education research into practice.Dr. Michelle Soledad, Ohio State University Michelle Soledad is a Lecturer in the Department of Engineering Education at The Ohio State University. She holds degrees in Electrical Engineering (BS
society through investigating community-based leMr. William Cohen, Ohio State University William Cohen is a Lecturer for the Fundamentals of Engineering program at The Ohio State University: a 2 semester course sequence for first-year engineering students focusing on programming in MATLAB, computer aided drawing in SolidWorks, and a semester long design-build-test project. William has also received his B.S. in Chemical Engineering and M.S. in Nuclear Engineering from Ohio State.Dr. James Edward Toney, Ohio State University James Toney earned the Ph.D. in physics from Carnegie Mellon University in 1998 and the B.S. in electri- cal engineering from Rensselaer Polytechnic Institute in 1984. He is a Senior Lecturer in the
Paper ID #31581Determinants of initial training for engineering educatorsDr. Elizabeth Pluskwik, Minnesota State University, Mankato Elizabeth leads the Engineering Management and Statistics competencies at Iron Range Engineering, an ABET-accredited project-based engineering education program of Minnesota State University, Mankato. She enjoys helping student engineers develop entrepreneurial mindsets through project-based and expe- riential learning. Her research interests include improving engineering education through faculty devel- opment, game-based learning, and reflection. Elizabeth was a Certified Public
questions were based on the students’survey developed by the researchers at Georgetown and HEDS [14-15] , and modified accordingto the peculiar aspects of our university. Because many of the engineering classes at SJSUinclude laboratories, projects or other group experiences, we wanted to create our own survey toask faculty members about these experiences. The research questions of the study are: 1. What are the impressions of faculty members to the learning environments in engineering courses after the switch to remote learning in Spring 2020? 2. What was the impact of the switch online in Spring 2020 to lab classes?COVID-19 forced many universities to transition quickly to remote teaching. Since Spring 2020,there was been many articles
engineering students. The survey askedstudents to self identify their gender. This was used to identify how these factors may influenceranking of rapport supportive behaviors. Additionally, this survey asked students both theiracademic program (the discipline within engineering) and their degree progression, in order toidentify how these factors impact such rankings.Based on findings in the literature, and given the scope of this project, the authors anticipate thatthe most effective way to broaden students’ retention in engineering education is throughestablishing rapport between engineering professors and their students. Using the results of thisstudy, we can design interventions aimed at faculty member’s ability to establish positiverapport, which