perspectives.Unfortunately, in stress analysis courses, the depth of the mathematical analysis and limited timeand resources often restricts the focus to traditional closed-form solutions occasionallysupplemented with simple demonstrations. In order to enhance student engagement andunderstanding, a lab mini-project was developed for teaching Castigliano’s method for structuralanalysis in a stress analysis course.The mini-project consists of a design evaluation task which is investigated using three differentmethods: closed-form analysis, finite element analysis, and simple model build and test. Thetask is to select the better of two alternative support structures for a heavy-duty material-handlingconveyor belt. Acceptance criteria in the form of maximum deflection
. “Improving Ethics Awareness in Higher Education”, Viewpoints Vol. I: Issues of Accreditation in Higher Education, Accreditation Board for Engineering and Technology, 2000.8. Feisel, L. D., Peterson, G. D., “A Colloquy on Learning Objectives for Engineering Education Laboratories”, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition.9. Larochelle, P. M., Engblom, J. J., Gutierrez, H., “An Innovative Introduction to Mechanical Engineering: A Cornerstone Design Experience”, 2003 ASME Curriculum Innovation Award Honorable Mention.10. Hinds, T., Somerton, C., “Integrating the Teaching of Computer Skills with an Introduction to Mechanical Engineering Course
adventures in the educational domain but remains passionate about the engineering education field.Dr. Thomas H. Bradley, Colorado State University Thomas H. Bradley is an Associate Professor of Mechanical Engineering in the College of Engineering at Colorado State University, where he conducts research and teaches a variety of courses in analysis, design and policy for sustainable energy systems. In 2013, Bradley was awarded the Ralph R. Teetor Award for Excellence in Engineering Education, and the US Dept of Energy EcoCAR2 Outstanding Incoming Faculty Advisor Award. Page 26.139.1 c
2006-831: CONTENT ASSESSMENT AT THE COURSE LEVELRichard Bannerot, University of Houston Richard Bannerot is a Professor of Mechanical Engineering at the University of Houston. His research interests are in the thermal sciences and in engineering design education. For the past fifteen years he has taught the required "Introduction to Design" course at the sophomore level and has been involved in the teaching of the department's capstone design course. He is a registered professional engineer in the State of Texas. Page 11.356.1© American Society for Engineering Education, 20062006-831: CONTENT
AC 2008-697: EFFECTIVE INTEGRATION OF MATHEMATICAL AND CAETOOLS IN ENGINEERINGRaghu Echempati, Kettering University Raghu Echempati is a Professor of Mechanical Engineering at Ketetring University, Flint, MI. He has over 25 years of academic teaching, research and consulting. He has published several technical papers in national and international conferences and journals of repute. He is an active member of ASME, ASEE and SAE.Enayat Mahajerin, Saginaw Valley State University Enayat Mahajerin is a Professor of Mechanical Engineering at Saginaw Valley State University, Saginaw, MI. He has over 30 years of academic teaching, research and consulting experience. He has published several technical
Paper ID #14593Assessment of Implementing an Undergraduate Integrated Thermal-FluidsCourse Sequence on the Results of the Fundamentals of Engineering Exam(FEE)Lt. Col. Richard V. Melnyk, United States Military Academy LTC Rich Melnyk is an Army Aviator and Assistant Professor in the Department of Civil and Mechanical Engineering at the United States Military Academy, West Point. He developed and implemented the first course offering of Thermal-Fluid Systems I in 2005. He was an Instructor and Assistant Professor from 2004-2007 and returned to teaching in 2015. He has a PhD in Aerospace Engineering, a PE in Mechanical
2007-2008 Fulbright exchange to Nigeria set the stage for him to receive the Marian Smith Award which was given annually to the most innovative teacher at WSU, and in 2016 he received the inaugural WSU Innovative Teaching Award based on the develop- ment and dissemination of hands-on desktop learning modules and their use in an interactive learning environment.Dr. Paul B. Golter, Ohio University Paul B. Golter obtained an M.S. and Ph.D. from Washington State University. His research area has been engineering education, specifically around the development and assessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the classroom. He is currently a Lecturer in Mechanical
Paper ID #16991Video-Based Concept Tutors with Assessment in Game Format for Engineer-ing CoursesEliza A. Banu, Auburn University Dr. Eliza Banu has a Bachelors degree in Electrical Engineering from Polytechnic University of Bucharest and completed her Ph.D. program in Mechanical Engineering at Auburn University in 2014. Dr. Banu’s research interests are in the dynamics of impact of rigid bodies and human with granular matter as well as developing innovative instructional materials. She has been working with LITEE (Laboratory for Innovative Technology and Engineering Education) at Auburn University since 2010.Dr. P.K
Paper ID #28288Students Taking Action on Engineering EthicsDr. Heather E Dillon, University of Portland Dr. Heather Dillon is an Associate Professor in Mechanical Engineering at the University of Portland. She recently served as the Fulbright Canada Research Chair in STEM Education. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining the university, Heather Dillon worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer.Jeffrey Matthew Welch, University of Portland Jeff Welch is a doctoral student in
or laboratory, targeted violence against a professor • Research risks (loss of research data or specimens, misuse of grant money, data fabrication, plagiarism, failed collaborations) • Other risks: email privacy risks (non-university accounts), unfair student discipline, discrimination, plagiarism, embezzlement, tenure denial complications and lawsuits, loss of computer data, field trip accidents, suicide, etc.Operationally, Ann Franke advises to take a broad view of what could go wrong, focus on smallsteps for improvement, get help, follow up, adjust and stick with it for the long term.Though not focused on college teaching, Dunklee et al in "A Primer for School RiskManagement" identify the following relevant
pedagogical innovation and implementation using qualitative methodologies. For example, she has investigated instructors’ interpretations of curriculum materials and their use of active teaching methods in the secondary school classroom.Dr. Aleksandra Radliska, Villanova University Aleksandra Radliska is an Assistant Professor of civil and environmental engineering at Villanova Uni- versity. She teaches introductory undergraduate courses on civil engineering materials as well as graduate courses that relate fundamentals of materials science with applications to civil engineering materials. Radliska is an active member of ASEE and the paper she co-authored with other Villanova Faculty Mem- bers won Best Paper Award from the
exciting devices for next semesters. Anextended version of the lecture with more theory and information is planned to be taught also forthe graduate level fluid mechanics course. We are also considering adding a few more similarlectures, like introduction to CFD, to introduce more applications and concepts.References1. Sert, C. and g. Nakiboglu. Use of Computational Fluid Dynamics (CFD) in Teaching Fluid Mechanics. in ASEE Annual Conference and Exposition. 2007. Honolulu, HW.2. Stern, F., et al., Hands-on CFD educational interface for engineering courses and laboratories. Journal of Engineering Education, 2006. 95(1): p. 63-83.3. Kresta, S.M., Hands-on Demonstrations: an alternative to Full scale lab Experiments. Journal of
AC 2008-1507: COMPARISON OF DIFFERING CREDIT HOUR ALLOTMENTSFOR THERMODYNAMICS AND FLUID MECHANICS COURSESAndrew Gerhart, Lawrence Technological University Andrew Gerhart is an Assistant Professor of Mechanical Engineering at Lawrence Technological University. He is actively involved in ASEE, the American Society of Mechanical Engineers, and the Engineering Society of Detroit. He serves as Faculty Advisor for the American Institute of Aeronautics and Astronautics Student Chapter at LTU and is the Thermal-Fluids Laboratory Coordinator. He serves on the ASME PTC committee on Air-Cooled Condensers.Philip Gerhart, University of Evansville Philip Gerhart is the Dean of the College of Engineering and
, Thermodynamics, Multiphase Flows, Fluid Mechanics and Hydraulic Machinery, as well as Mechanical Engineering Laboratory courses. In addition, Dr. Ayala has had the opportunity to work for a number of engineering consulting companies, which have given him an important perspective and exposure to the industry. He has been directly involved in at least 20 different engineering projects related to a wide range of industries from the petroleum and natural gas industry to brewing and newspaper industries. Dr. Ayala has provided service to professional organizations such as ASME. Since 2008 he has been a member of the Committee of Spanish Translation of ASME Codes and the ASME Subcommittee on Piping and Pipelines in Spanish. Under
interests in- clude innovative teaching and learning strategies, use of emerging technologies, and mobile teaching and learning strategies.Dr. Donald Plumlee P.E., Boise State University Dr. Plumlee is certified as a Professional Engineer in the state of Idaho. He has spent the last ten years es- tablishing the Ceramic MEMS laboratory at Boise State University. Dr. Plumlee is involved in numerous projects developing micro-electro-mechanical devices in LTCC including an Ion Mobility Spectrometer and microfluidic/chemical micro-propulsion devices funded by NASA. Prior to arriving at Boise State University, Dr. Plumlee worked for Lockheed Martin Astronautics as a Mechanical Designer on struc- tural airframe components
steering committee for the International Conference on Wear of Materials and on the Mechanical executive committee of the Mechanical Engineering Division of ASEE. He also serves as an ABET program evaluator on behalf of ASME. Prof. Sundararajan has been recognized for his accomplishments with the Young Engineering Faculty Research Award and Early Achievement in Teaching Award at Iowa State University. He received his B.E. degree in Mechanical Engineering from The Birla Institute of Technology and Science, Pilani (India) followed by M.S. and PhD degrees in Mechanical Engineering from The Ohio State University, Columbus, Ohio
Paper ID #12366Student Reflection, Self-Assessment and Categorization of Errors on ExamQuestions as a Tool to Guide Self-Repair and Profile Student Strengths andWeaknesses in a CourseDr. David Benson, Arizona State University Dr. David Benson is a Senior Lecturer with the Ira A. Fulton Schools of Engineering at Arizona State University. Dr. Benson develops and teaches classes in ”Introduction to Engineering” and project-based classes such as EPICS and Global Engineering.Dr. Haolin Zhu, Arizona State University Haolin Zhu is a faculty lecturer in the Ira A. Fulton Schools of Engineering at Arizona State Univer- sity. She
in a laboratory-based Aerospace Engineering Failurecourse, using a concept inventory exam. Evans et. al. [5] described progress on development ofConcept Inventory assessment instruments, which could be used by instructors to judge theadequacy of their instruction, and upon inclusion of data segregated by how content wasmanaged and delivered, to identify effective practices, and relate specific teaching techniques tostudent learning across multiple subjects. These subjects included thermodynamics; solidmechanics; signals and processing; electromagnetics; fluid mechanics; heat transfer, and more[5]. In discussing development of Concept Inventory assessment instruments related to thesubject thermal and transport phenomena (e.g. thermodynamics
degree in 2001, and the PhD degree in 2005, all from the mechanical engineering department of Carnegie Mellon University. After a seven year career in the hard disk drive industry, Dr. Bedillion joined the faculty of the South Dakota School of Mines and Technology in Spring 2011. Dr. Bedillion’s research interests include distributed manipulation, control applications in data storage, control applications in manufacturing, and STEM education.Dr. Michael Langerman, South Dakota School of Mines and Technology Dr. Michael Langerman is professor and Head of the Mechanical Engineering Department and Co- Director of the Computational Mechanics Laboratory at the South Dakota School of Mines and Tech- nology (SDSM&T
AC 2009-2477: THE CHEMICAL THERMODYNAMIC MODULE OF THEEXPERT SYSTEM FOR THERMODYNAMICS (“TEST”) WEB APPLICATIONSubrata Bhattacharjee, San Diego State University Dr. Bhattacharjee is a professor of Mechanical Engineering at San Diego State University. His research areas include combustion, radiation heat transfer, and web-based numerical methods for computational thermodynamics.Christopher Paolini, San Diego State University Dr. Paolini is the Unix System Administrator in the College of Engineering and is the Director of the Computational Thermodynamics Laboratory at Mechanical Engineering Department. His research areas include chemical equilibrium analysis, adaptive algorithm, and AJAX based
situation made learning almostimpossible, while a consistent 15% of students listed at least eight distinct items that madelearning at least highly challenging, if not almost impossible. The primary factors thatcontributed to these major challenges, in all semesters, were lack of motivation to do work, ageneral lack of daily structure, limited social interaction, and anxiety. As we transitioned fromemergency remote teaching to HyFlex teaching, our students reported an organized learningmanagement system (LMS) and clear communication being very helpful, while alsoacknowledging their need for compassion, empathy, and praise from their instructors.MethodsOur survey was deployed at York College of Pennsylvania, a private, medium-sized, liberal
Paper ID #11788Game Design and Learning Objectives for Undergraduate Engineering Ther-modynamicsProf. John M. Pfotenhauer, University of Wisconsin, Madison Professor John M. Pfotenhauer earned his BA, MA, and PhD degrees in physics from St. Olaf College and the University of Oregon in 1979, 1981, and 1984. For eight years he conducted research as part of the Applied Superconductivity Center at the University of Wisconsin – Madison before joining the faculty there in the Departments of Mechanical Engineering, and Engineering Physics in 1993. In addition to his research in cryogenics, and in educational games, he teaches
50 articles in peer-reviewed journals and conference proceedings and two invited book chapters. He serves on the conference committee for the International Conference on Wear of Materials and has been recognized for his accomplishments with the Young Engineering Faculty Research Award and Early Achievement in Teaching Award at Iowa State University. He received his B.E. degree in mechanical engineering from the Birla Institute of Technology and Science, Pilani (India), followed by M.S. and Ph.D. degrees in mechanical engineering from The Ohio State University, Columbus, Ohio. He is a member of ASEE, ASME, and ASM
AC 2007-2879: USING THE SAE COLLEGIATE DESIGN SERIES TO PROVIDERESEARCH OPPORTUNITIES FOR UNDERGRADUATESGregory Davis, Kettering University DR. GREGORY W. DAVIS is a Professor of Mechanical Engineering at Kettering University, formerly known as GMI Engineering & Management Institute. Acting in this capacity, he teaches courses in the Automotive and Thermal Science disciplines. He also serves a Director of the Advanced Engine Research Laboratory, where he conducts research in alternative fuels and engines. Currently, Greg serves as co-faculty advisor for the world's largest Student Chapter of the Society of Automotive Engineers (SAE) and the Clean Snowmobile Challenge Project. Greg is
engineeringprogram is not new1,2. Prince and Felder3 reviewed over a hundred studies addressing theassessment of various teaching strategies and concluded that “inquiry learning” and“problem-based learning” were generally more effective than others. The engineeringeducation literature provides many examples of this type of learning through “hands-on”or “learning-by-doing” projects. In fact many schools have introduced innovative“hands-on” activities and hardware into their freshman courses4-11, their sophomorecourses in mechanics12-20 and thermodynamics21-27 as well as in other engineeringcourses28-35, “non-majors” courses36, 37 and high school courses38-40.We introduced a sophomore design course, including a semester-long, team design, buildand test
AC 2007-1383: A STUDY ON THE EFFECTS OF TIMING ON ENGINEERINGSTUDENTS’ ABILITIES TO SOLVE OPEN-ENDED PROBLEMS WITHCOMPUTERSVeronica Addison, University of South Carolina Veronica Addison is a Ph.D. Candidate in Mechanical Engineering at the University of South Carolina and a former GK-12 Fellow. Her research and teaching interests include sustainability, the built environment, energy and environmental design.Christian Hipp, University of South Carolina Christian Hipp is a Ph.D. Candidate in Philosophy at the University of South Carolina. His research interests include applied ethics, demarcation criteria in genetic domains and convergent technologies.Jed Lyons, University of South Carolina
Paper ID #21221An Arduino-Based Hardware Platform for a Mechanical Engineering Sopho-more Design CourseDr. Mark David Bedillion, Carnegie Mellon University Dr. Bedillion received the BS degree in 1998, the MS degree in 2001, and the PhD degree in 2005, all from the mechanical engineering department of Carnegie Mellon University. After a seven year career in the hard disk drive industry, Dr. Bedillion was on the faculty of the South Dakota School of Mines and Technology for over 5 years before joining Carnegie Mellon as a Teaching Faculty in 2016. Dr. Bedillion’s research interests include control applications in robotics
it wascompared to a traditional classroom course; at the end, it was determined that even though theonline course could be useful to help students understand fundamental concepts in Statics, itbecomes less effective than the face-to-face course when teaching students to solve a diversity ofpractical problems7. Kim et al.8 developed a hands-on mechanics laboratory, with online accessto some experimental setups. The laboratory was a co-requisite for ME students in the Staticscourse, but, it was optional for other majors. Such mechanics laboratory allowed students tounderstand Statics concepts better through instructor demonstrations and cooperative learninghands-on activities, group projects, and discussions; as a result, the failure and
at Sandia National Laboratories, Albuquerque, NM, before joining the faculty at California Polytechnic State University, San Luis Obispo, as an Associate Professor of Mechanical Engineering. Currently she teaches thermodynamics, heat transfer, and fluid mechanics. Her research is in the area of multiphase flows and computational modeling of thermal-fluid systems.Jane Kennedy, California Polytechnic State University Jane Kennedy is a lecturer of Mechanical Engineering at California Polytechnic University, San Luis Obispo. She received her B.S. from UCLA in 1991 and her M.S. from Cal Poly in 1996. She is the Research Director of Investors Internet Inc. and co-author of the book "The
graduate students and engineers, and learn about graduate schooland other undergraduate research options. Graduate students participate in career developmentworkshops and gain mentoring, project management and teaching experience. The program alsoinvites guest speakers that provide information on the topics most relevant to applying andgetting through graduate school successfully.The goals of GLUE are to:1. Contribute to the overall goal of WEP to recruit, retain and graduate women in the Cockrell School of Engineering at The University of Texas at Austin2. Provide undergraduate students with the opportunity to experience research first-hand3. Increase the number of female engineering students pursuing graduate degrees and research careers4