student survey and instructor-assessed elements. The tool is beingused in the capstone design course sequence, and the results from three semesters ofimplementation are reported and briefly discussed. Compared to the previous method of peer-evaluation alone, the new tool allows each sub-outcome to be measured and evaluated.IntroductionMechanical engineering seniors at Lawrence Technological University (LTU) complete acapstone design project: either an SAE collegiate design series (CDS) competition or anindustry-sponsored project (ISP). These capstone projects serve as a summative assessment,bringing together machine design, thermo-fluids, manufacturing, and mechatronics topics into areal-world design experience. Relative coverage of these topics
method and concluded thatVPA could collect data accurately without affecting the performance of the subjects observed.They also indicated that thinking aloud might slow down the working process but that thesubjects’ thinking was not interfered with by thinking aloud unless they were asked to providemore information.The basic methodology of the protocol analysis method consists of the following sequence oftasks that were followed for this project. project.Design problem. All dyads completed the same open-ended engineering design challenge. Thedesign challenge used was a double-hung window opener that assisted the elderly with raisingand lowering windows. This challenge had been used by other researchers to study engineeringdesign (Williams et al
five rankings was presented for thestudents’ reference. The next component was a series of questions on “Team Conflict,” whichwere answered using a Likert scale (none, little or rarely, some, much or often, very much orvery often). Examples of questions included, “How frequently do you have disagreements withinyour work group about the task of the project you are working on?” and “How much emotionalconflict is there in your work group?” Next, three questions on “Team Satisfaction” wereanswered on a Likert scale (strongly agree, agree, neither agree nor disagree, disagree, stronglydisagree). Questions included, “I am satisfied with my teammates”, “I am pleased with the waymy teammates and I work together,” and “I am very satisfied with working
engineering and the program director for the Master of Science in Automotive Engineering. In addition, he is faculty co-advisor for the Collegiate Chapter of SAE and the Blue Devil Motorsports Organization. c American Society for Engineering Education, 2016 A Three Semester Mechanical Engineering Capstone Design Sequence Based on SAE Collegiate Design SeriesAbstractMechanical engineering students at Lawrence Technological University complete a five-credithour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three semester, threecourse sequence. Each team of seniors designs
of Capstone DesignAbstractThe Mechanical, Electrical, and Computer Engineering Programs at York College ofPennsylvania have mandatory co-op programs in which each student receives three semesters ofengineering work experience. Our senior design courses further develop our students’ designand project development skills by intentionally targeting projects that emphasize working withina larger team. For example, we have built autonomous robots for the International GroundVehicle Competition (IGVC) and formula style race cars for the Society of AutomotiveEngineering Formula Student Design Competition (FSAE). While successfully developing ourstudents’ project development and group communication skills, these projects lacked thepersonal
Vladimir Arutyunov2 1 Mechanical Engineering Department, San Diego State University 2 Mechancial Engineering Department, California State University NorthridgeAbstractSenior design projects are essential capstone experiences to Mechanical Engineering studentsthat allow them to integrate and apply the knowledge they attained in all of their prerequisitecourses. Generally, senior students are required to engineer a system that can be purelymechanical or interdisciplinary such as a biomedical, automotive, or aerospace system.Traditionally, Mechanical Engineering curricula focus on the specifics of each component orsubsystem with no regard, or at best little regard, to the overall system
juniors), team activities typicallyinvolve only the six or seven students enrolled in the capstone project. All the HPVC studentsexpressed frustration that they were “not allowed to do anything” until they were in charge. Thenon-capstone students, and especially new members, have no input on the design or building oftheir vehicle. Often the capstone students do not even include these other team members incommunications to arrange meetings or work times. Thus, students have very little opportunityto learn anything about the vehicle design, component manufacturing, or administrative tasksbefore they are responsible for the entire project. Because of the tight affiliation with thecapstone graduation requirement, this team maintains formidable
,mechatronics-style courses and design experiences that have been developed to address this gap[1, 8, 9, 10] (for a thorough sampling of mechatronics education resources, please see [11]).Inevitably, resource and time restrictions, coupled with needing extensive training through pre-requisite courses, limits early exposure to mechatronics-style design projects. Unfortunately, thisoften delays this important introduction to mechatronics and system design to late in theengineering curriculum, likely coinciding with other courses which would benefit from studentshaving had prior experience of such skills (such as capstone design projects). As a result, there isa growing interest in providing systems-level, mechatronics-like training early on in
Confidence Question Difference Use Computer Tools +0.4 Use Technical Concepts -0.1 Use Fabrication tools +0.1Table 7. Questions about Solving ProblemsIn general, the students in the project-based curriculum indicate more confidence in designingbut less confidence in identifying a design need than students in the traditional curriculum. Thiscould be a result of the students in the project-based curriculum being faced with the open-ended,multidisciplinary, design problems associated with the competition projects. Students in thetraditional curriculum typically will not have that experience until the capstone design course.Students in the
Dynamics Research on Undergraduate EducationAbstract The obtaining of an undergraduate degree concludes a successful student universitycareer. For many pursuing an undergraduate degree in Mechanical Engineering, the process canbe tedious and difficult. Much like an engineering design, an engineering education requiresspecific tools to see the problem from design to production. For many, the desired solution toproducing the degree is supplemented only by an introductory design class, a few hands onlaboratories that provide an introduction to a few key basic concepts, and a capstone course thatrequires the implementation of the acquired knowledge in a final design project intending tomimic the design process
competitive teams (iii) increasing the recruitment and retention of female and underrepresented students, faculty, and staff (iv) developing a more diverse set of engineering design projects (Capstone) and activities to show the broader inter-disciplinary nature of ME and, as a result, further increase student motivation and engagement in the field (v) increasing the awareness of the department as a whole of the need for an inclusive environment 3Our current departmental goals include recruiting and retaining underrepresented students andfaculty, and encouraging their active participation as stakeholders of our school. Our current goalclosely aligns with our College’s
sustainability b. Evaluate a product/ engineering system’s environmental impacts using Life Cycle Assessment c. Design/ redesign a product/ engineering system to using the engineering principles to improve environmental impactsThe achievement of these goals was assessed through students’ self-evaluations and analysis ofstudents’ coursework. In addition, the objectives are also planned to be assessed throughstudents’ capstone senior projects. But at the time of creation of this work-in-progress paper, thestudents who took this course have not worked on their senior project yet, as a result, this part ofthe assessment is planned to be conducted once the students worked on their senior projects. Toextend and complete this work-in-progress, it
Page 26.518.1 c American Society for Engineering Education, 2015 Development of a Ball-and-Plate SystemAbstractThis paper presents the development of a dynamic ball-and-plate system successfully completedfor a one-semester Senior Capstone Design project. A group of five undergraduate studentsdeveloped the project concept and constructed a prototype within a semester, integrating majormechatronics engineering concepts learned in classes. The three-degree-of-freedom systemconsists of sensors, actuators, and controls to keep a free rolling ball in a desired position on aflat plate, accounting for any possible external disturbances. Due to its complexity, multiple stepswere taken to solve the
engi-neering design and provides a project-based design experience wherein the students design andbuild a microcontroller driven autonomous mechatronic device. In doing so, they are provided anearly exposure to the systematic approach to engineering problem solving that brings together fun-damentals concepts of forces, motions, energy, materials, manufacturing processes, and machinesand mechanisms. This goal aligns well with our department’s vision to create a design-orientedparadigm of Mechanical Engineering education that begins with an early introduction to designprinciples and ends with capstone design experience. Some of the Course Learning Objectives (CLOs) of this class pertaining to the design experi-ence are: 1. Apply Engineering
resume.Three students indicated a “Very high likelihood” of offering Candidate 2 an interview, while nostudents selected “Very low likelihood” for Candidate 2’s interview prospects. Candidate 2’sweighted mean evaluation was 3.44. When asked which traits stood out about Candidate 2,experience was again the most commonly included response, but the student evaluators alsoremarked on Candidate 2’s capstone project and programming language skills. Figure 3: Quantitative evaluation of Candidate 2 (“John”); N=16. Figure 4: Qualitative evaluation of Candidate 2 (“John”).Coding the qualitative traits assessment for each of the candidates highlights the disparity betweennon-technical and language skills for “Julie” vice
of an undergraduate curriculum in mechatronics systems engineering. Journal of Engineering Education, 88(2), 173-179. 4. Hargrove, J. B. (2002). Curriculum, equipment and student project outcomes for mechatronics education in the core mechanical engineering program at Kettering University. Mechatronics, 12(2), 343-356. 5. Mariappan, J., & Flint, M. I. (1997). A laboratory for mechatronics courses. ASEE Annual Conference and Exposition. 6. Bishop, W., Nespoli, O., & Parker, W., (2012). Rubrics for accreditation and outcomes assessment in engineering capstone projects. Proceeding of Canadian Engineering Education Association Conference. APPENDIX
chapter and research papers on machining of composites. He has a diverse industrial experience for 27 years, in design, research and manufacturing of electro me- chanical systems, such as design of various types of gear and gear boxes, antennas and light and heavy fabricated structures, for communication, TV telecast, natural disasters management and Telemedicine application. Dr PS, designed and manufactured various types of antenna’s weighing from 200 pounds to 100,000 pounds. He was also actively involved in configuring the antenna controls and selection of motor and motor controllers. Dr PS, has advised more than 40 senior/capstone projects. One of his project won the national award from Airforce Research Laboratory
engineers who can design”[11]. Considering that design is widely regarded as the main activity in engineering, it has neverbeen more urgent for students to gain design experience from their education. However, whileevery ABET accredited engineering program is required to have a capstone or similarly namedproject, most universities only provide such an experience in the senior year of the degree [6].There are two primary solutions to the given issue: offer a curriculum with a rich-project baseand/or promote co-curricular activities. This type of curriculum would entail, say, yearly designprojects, while the extra-curricular activities would include both service-learning tasks as well aslarge cross-disciplinary programs such as the Baja SAE events or
Technological University After an 18 year career in the automotive industry, Dr. De Clerck joined the Michigan Tech Department of Mechanical Engineering - Engineering Mechanics in August 2009. His areas of expertise include noise and vibration, structural dynamics, design, modal analysis, model validation, inverse methods applied to design, and advanced measurement techniques.Dr. Michele Miller, Michigan Technological University Dr. Michele Miller is a Professor of Mechanical Engineering at Michigan Technological University. She teaches classes on manufacturing and does research in engineering education with particular interest in hands-on ability, lifelong learning, and project-based learning.Dr. Ibrahim Miskioglu, Michigan
completionof the course, students will be able to: 1. Complete a flowchart of how to solve a problem; 2. Use a computer program to solve an engineering problem; 3. Correctly and clearly plot the results of calculations; 4. Program a microprocessor; and 5. Use software to accurately represent a 3-dimensional object.Prior to this curriculum change, mechanical engineers were not all exposed to microprocessorprogramming. A number of students employed them in club, competition, or capstone projects,but this was generally a minority. Department faculty decided to seize the opportunity in thisnew course to introduce microcontrollers to all mechanical engineering students. Not only is itan engaging way of exercising and reinforcing recently
Dr. Beyerlein has taught at the University of Idaho for the last 34 years. He is a former department chair and collaborates the college of engineering introduction to engineering course, the inter-disciplinary capstone design course, and the FE review course. Dr. Beyerlein has been active in research projects involving engine testing, engine heat release modeling, design of curricula for active learning, design pedagogy, and assessment of professional skills.Mr. JJ Petersen, University of Idaho American c Society for Engineering Education, 2021 Transforming Introductory Engineering Courses to Match GenZ Learning
long-term effects (timely graduation) of dropping any course.The Change of Major Form that also requires the Department Head signature. This allows theDepartment Head to provide a larger vision for working through academic difficulties as well ascollect critical data as to why students are choosing to leave engineering. During the mandatoryadvising each semester, students discuss their career goals, leadership opportunities, student clubactivities, pursuit of a minor, undergraduate research, and internships.Student Excellence Day. During the past three years, students have had the opportunity topresent their senior capstone, research, service, and competition projects late in the springsemester. Engineering students observe and question their
. Students in the BSME program complete a rigorous,project-based curriculum [7] designed to engage students in the engineering design-build-testprocess during all four years of undergraduate study. Program highlights include small classsizes, access to faculty, and an integrated study abroad option.The University of Evansville has implemented both admissions processes mentioned in theintroduction. Students entering the program directly from high school must meet admissioncriteria for ME Lower Division. After completing the required Lower Division courses with agrade of C- or better, students must apply for ME Upper Division status to complete the final twoyears of study.Lower DivisionLower Division is classified as the first two years of
Paper ID #11317Finite Element Analysis Active Learning Modules Embedded Throughout ACurriculum: Implementation and Assessment of Results Based on StudentGPAProf. Kyle A. Watson, University of the Pacific Kyle Watson earned his B.S. in mechanical engineering from Villanova University and his M.S. and Ph.D. in mechanical engineering from North Carolina State University. He has been a faculty member at the University of the Pacific since 2003 and has taught undergraduate courses in thermodynamics, heat transfer, combustion, air-conditioning, dynamics, and senior capstone design.Dr. Ashland O. Brown, University of the Pacific