-305. 11. Sanchez, K., Magana, A. J., Sederberg, D., Richards, G., Jones, G., & Tan, H. (2013). Investigating the Impact of Visuohaptic Simulations for Conceptual Understanding in Electricity and Magnetism. Paper presented at the 120th ASEE Annual Conference & Exposition, Atlanta, GA. 12. Moyer-Packenham, P. S., Salkind, G. W., Bolyard, J., & Suh, J. M. (2013). Effective choices and practices: Knowledgeable and experienced teachers' uses of manipulatives to teach mathematics. Online Journal of Education Research, 2(2), 18-3313. Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students' conceptual understanding through science laboratory
Science, Associate Professor of Education, and Director and Graduate Chair for Engineering Education Research Programs at University of Michigan (U-M). Dr. Finelli is a fellow in the American Society of Engineering Education, a Deputy Editor of the Journal for Engineering Education, an Associate Editor of the IEEE Transactions on Education, and past chair of the Educational Research and Methods Division of ASEE. She founded the Center for Research on Learning and Teaching in Engineering at U-M in 2003 and served as its Director for 12 years. Prior to joining U-M, Dr. Finelli was the Richard L. Terrell Professor of Excellence in Teaching, founding director of the Center for Excellence in Teaching and Learning, and
Engineering Design Through Project-Oriented Capstone Courses,” Journal of Engineering Education, Vol. 86, No. 1, 1997, pp. 17-28.3. Davis, William J., and Philip D. Strope, “Enhancing Student Learning and Community Service Through Senior Engineering Projects,” Annual Conference of the American Society of Engineering Education – Southeast Section, 2000.4. Craft, Lucille, “Crafting a New Curriculum,” ASEE Prism, Jan, 2005, pp. 30-34.5. Miller, Gregory and Stephen Cooper, “Something Old, Something New: Integrating Engineering Practice into the Teaching of Engineering Mechanics,” Journal of Engineering Education, Apr, 1995, pp. 105-115.6. Shapira, Aviad, “Bringing the Site into the Classroom: A Construction Engineering Laboratory,” Journal of
currently teaches Engineering Statics, Mechanics of Solids, and Civil Engineering Materials. Page 23.600.1 c American Society for Engineering Education, 2013First Encounters: Statics as the Gateway to Engineering CultureThis paper describes ongoing efforts at Syracuse University to re-engineer the traditionalstatics course. This course forms part of a larger NSF funded project aimed at increasinginnovation and creativity in engineering curricula. The principal aim of the overallproject is to find strategies to foster and reward creativity in engineering students.At Syracuse University, as at many
engineering (FE) exam. Thestudy presented in this paper details the approach taken to replace in-class quizzes with regularout-of-class homework assignments in an introductory engineering mechanics course. Theobjectives of the study were to: 1) provide students with a variety of problems to apply both newand previous knowledge; 2) encourage engagement with the course material outside of in-personlessons; and 3) teach students to reflect and self-assess their own learning. Eighteen homeworkassignments were added throughout the thirty-lesson course. Each assignment consisted of twoparts; practice problems from previous lessons and conceptual responses based on preparation forthe next lesson. At the beginning of each class, students were given the
Paper ID #5731Software Simulations and Project Based Active Learning to Engage Studentsin an Introductory Statics CourseDr. Abhijit Nagchaudhuri, University of Maryland, Eastern Shore Abhijit Nagchaudhuri is a Professor in the Department of Engineering and Aviation Sciences at University of Maryland Eastern Shore. Dr. Nagchaudhuri is a member of ASME and ASEE professional societies and is actively involved in teaching and research in the elds of engineering mechanics, robotics and control systems; precision agriculture and remote sensing; and biofuels and renewable energy. Dr.Nagchaudhuri received his bachelors degree
Paper ID #26446Students – Ask Them to Eat Their Steaks!Dr. Julian Ly Davis, University of Southern Indiana Julian received his Ph.D. from Virginia Tech in Engineering Mechanics in 2007. He spent a semester teaching at community college in the area and then spent two years at University of Massachusetts con- tinuing his research in finite element modeling and biomechanics and continuing to teach. He has been at the University of Southern Indiana since 2010.Dr. Tom McDonald, University of Southern Indiana Tom McDonald is an Associate Professor in the Engineering Department at the University of Southern Indiana. He serves
Paper ID #32895The Mechanics of SUCCESS: How Non-Cognitive and Affective Factors Re-lateto Academic Performance in Engineering MechanicsDr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in
, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing model-eliciting activities in mechanical engineering courses, inquiry-based
projects related to engineering and engineering education: value-added manufacturing (Dr. Katie Whitefoot), taxonomy of engineering education (Dr. Cynthia Finelli), pioneers in engineering education (Dr.Cynthia Atman) and inquiry-based learning in mechanics (Dr. Brian Self).Dr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011
Morton Krousgrill, Purdue University, West Lafayette Charles M. Krousgrill is a Professor in the School of Mechanical Engineering at Purdue University and is affiliated with the Ray W. Herrick Laboratories at the same institution. He received his B.S.M.E. from Purdue University and received his M.S. and Ph.D. degrees in Applied Mechanics from Caltech. Dr. Krousgrill’s current research interests include the vibration, nonlinear dynamics, friction-induced oscillations, gear rattle vibrations, dynamics of clutch and brake systems and damage detection in rotor systems. Dr. Krousgrill is a member of the American Society for Engineering Education (ASEE). He has received the H.L. Solberg Teaching Award (Purdue ME) seven
2000 and the Rose-Hulman Board of Trustee’s Outstanding Scholar Award in 2001. He was one of the developers of the Rose-Hulman Sophomore Engineering Curriculum, the Dynamics Concept Inventory, and he is a co-author of Vector Mechanics for Engineers: Dynamics, by Beer, Johnston, Cornwell, and Self. In 2019 Dr. Cornwell received the Archie Higdon Distinguished Educator Award from the Mechanics Division of ASEE.Dr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air
Paper ID #25644Affordable learning solutions and interactive content in engineering mechan-icsDr. Nicolas Ali Libre, Missouri University of Science & Technology Nicolas Ali Libre, PhD, is an assistant teaching professor of Civil Engineering in Missouri University of Science and Technology.He received his B.S. (2001), M.S. (2003) and Ph.D. (2009) in civil engineering with emphasis in structural engineering, all from the University of Tehran, Iran. His research interests and experience are in the field of computational mechanics, applied mathematics and cement-based composite materials. During his post-doc in the
surprising that the retention rate of undergraduateengineering programs can be adversely affected. As a result, a Statics instructor may facesubstantial pressure (whether real or perceived) to minimize the attrition rate yet still preparestudents for subsequent higher-level engineering coursework.Various pedagogical approaches to teaching mechanics have been attempted with the intent ofimproving student success. Some approaches include supplemental instruction [2], interactivetutoring [3], recitations [4], virtual laboratories [5], online courseware [6], and gaming [7]. It isimportant to concede that even the most well-intentioned and passionate instructors may nothave access to the resources to implement these unique approaches. Thus, traditional
effort in recent years focused on implementing newtechniques to the teaching of engineering mechanics. This work has included combiningtraditional statics topics in a heavily design oriented backdrop (Russell 7, Condoor 8, Klosky etal. 9), focusing on application to real artifacts (Seif and Dollar 10), and combining statics conceptswith those from mechanics of solids and machine design (Chaphalkar 11). Recent effortsdocument successes with utilizing an inverted classroom (Papadopoulos et al.12) and otherinnovative pedagogies. The goal of improving educational outcomes via a highly interactiveclassroom has been shown to be successful in formats where lectures and laboratories arecombined and problem-based active learning techniques are
Paper ID #12100Video Resources and Peer Collaboration in Engineering Mechanics: Impactand Usage Across Learning OutcomesDr. Edward J. Berger, Purdue University Edward Berger is an Associate Professor of Engineering Education and Mechanical Engineering at Purdue University, joining Purdue in August 2014. He has been teaching mechanics for nearly 20 years, and has worked extensively on the integration and assessment of specific technology interventions in mechanics classes. He was one of the co-leaders in 2013-2014 of the ASEE Virtual Community of Practice (VCP) for mechanics educators across the country.Dr. Edward A Pan
Paper ID #19666Instrument for Assessing Skills related to Free Body Diagrams in a Sopho-more Engineering Mechanics CourseDr. Kristi J. Shryock, Texas A&M University Dr. Kristi J. Shryock is an Associate Professor of Instruction in the Department of Aerospace Engineering at Texas A&M University. She received her BS, MS, and PhD from the college of engineering at Texas A&M. Kristi works to improve the undergraduate engineering experience through evaluating prepara- tion in mathematics and physics, incorporating non-traditional teaching methods into the classroom, and engaging her students with interactive
Manufacturing and Quality Engineering. His current work primarily investigates the effects of select emergent pedagogies upon student and instructor performance and experience at the collegiate level. Other interests include engineering ethics, engineering philosophy, and the intersecting concerns of engineering industry and higher academia.Mr. Nick Stites, Purdue University, West Lafayette Nick A. Stites is the Co-Director of the Integrated Teaching and Learning Program and Laboratory at the University of Colorado Boulder. He is also an instructor in the Engineering Plus Program. His research interests include the development of novel pedagogical methods to teach core engineering courses and leveraging technology to enhance
Professor at California Polytechnic State University at San Luis Obispo in the Department of Mechanical Engineering teaching dynamics, vibrations and con- trols. He is involved in several undergraduate and master’s level multidisciplinary projects and interested in engineering education research. Page 25.1419.1 c American Society for Engineering Education, 2012 USING AUTOMOTIVE SAFETY IN A SERVICE-LEARNING PROJECT FOR UNDERGRADUATE DYNAMICSAbstractAutomotive safety was used as a service-learning, overarching term-long theme in anundergraduate Engineering Dynamics course. The service
solving has not been understood orembraced. As a foundational course, difficulties here can impact student academic confidenceresulting in a diminished sense of self-efficacy that is particularly problematic when amplified bygender and under-represented (URM) minorities issues. And such faltering so early in the majorcan cause a student to leave engineering.While difficulties in the course arise for several reasons, our project seeks to address the problemof context. Our hypothesis is that women and minorities particularly, and students generally, aremore likely to do well in statics when the problems are placed in the context of real worldusefulness. An approach to teaching that effectively scaffolds students' efforts at model buildingand
Pennsylvania Scott Kiefer has spent the past sixteen years teaching mechanical engineering at four institutions. As an exemplary teaching specialist in mechanical engineering at Michigan State University, Scott received the Withrow Award for Teaching Excellence, given to one faculty member in the College in Engineering for outstanding instructional performance. Scott specializes in machine design, vibrations and controls, and mechatronics. He started his career at the University of Puerto Rico at Mayaguez in the traditional role of teaching and administering a modest research program. At Trine University, a small private school in Angola, Indiana, Scott taught ten different courses from introductory freshman courses to
Paper ID #29366The Role of Timely Actionable Student Feedback in Improving Instructionand Student Learning in Engineering CoursesDr. Petros Sideris, Zachry Department of Civil and Environmental Engineering, Texas A&M University Dr. Sideris is an Assistant Professor at the Zachry Department of Civil and Environment Engineering at Texas A&M University, since 2017. Prior to joining Texas A&M, Dr. Sideris was an Assistant Professor at the University of Colorado at Boulder, where he also served as the Director of the Structures and Materials Testing Laboratory. He received his Master’s (2008) and Ph.D. (2012) in Civil
Page 23.856.1 c American Society for Engineering Education, 2013 Learning Statics by Feeling: Effects of Everyday Examples on Confidence and Identity DevelopmentAbstractA novel teaching approach, the Body-Based Approach, uses the framework of active learning tostructure the implementation of everyday engineering examples in recitations as part of anEngineering Statics course in fall 2012 at a large public university. As the gateway course tomany engineering disciplines, Statics is typically the first technical engineering course anaspiring undergraduate takes and is frequently a prerequisite for subsequent technicalrequirements along the engineering pathway. With a class size of
AC 2007-61: ADDING CONTEXT TO A MECHANICS OF MATERIALS COURSEAndrea Surovek, South Dakota School of Mines and Technology Page 12.178.1© American Society for Engineering Education, 2007 Adding Context to a Mechanics of Materials CourseIntroductionOne of the greatest challenges in teaching fundamental engineering courses is getting studentsengaged in the material by making them feel it is relevant and has context in the “real world”.This is clearly important considering that providing context for abstract engineering concepts aswell as “learn-by-doing” experiences can increase student comprehension1. In addition, a lack ofcontext has been cited as a contributing
Paper ID #34248Development of an Interactive Top Hat Textbook for Engaged LearningDr. Matthew M. Barry, University of PittsburghMiss Samantha E. WismerDr. Tony Lee Kerzmann, University of Pittsburgh Dr. Tony Kerzmann’s higher education background began with a Bachelor of Arts in Physics from Duquesne University, as well as a Bachelor’s, Master’s, and PhD in Mechanical Engineering from the University of Pittsburgh. After graduation, Dr. Kerzmann began his career as an assistant professor of Mechanical Engineering at Robert Morris University which afforded him the opportunity to research, teach, and advise in numerous
Paper ID #25917Mechanics Knowledge Enhanced with Videos Illustrating Concepts Experi-enced with Hands-on ActivitiesDr. Rania Al-Hammoud P.Eng., University of Waterloo Dr. Al-Hammoud is a Faculty lecturer (Graduate Attributes) in the department of civil and environmental engineering at the University of Waterloo. Dr. Al-Hammoud has a passion for teaching where she con- tinuously seeks new technologies to involve students in their learning process. She is actively involved in the Ideas Clinic, a major experiential learning initiative at the University of Waterloo. She is also re- sponsible for developing a process and
Paper ID #14025Active Learning and Engagement in Mechanics of SolidsProf. Keri Ryan, University of Nevada, Reno Keri Ryan is an Associate Professor in Civil and Environmental Engineering at University of Nevada, Reno. She has taught core courses in mechanics to engineering students for 8 years, and has led the charge to bring innovative teaching methods to this course at University of Nevada, Reno. Besides teaching courses at the undergraduate and graduate level, she maintains an active research program in earthquake engineering.Dr. Adam Kirn, Univeristy of Nevada, Reno Adam Kirn is an Assistant Professor of
wall, (ii) develop a stress-mediated model of urinary bladder adaptive response, and (iii) understand the fundamental mechanisms that correlate the mechanical environment and the biological process of remodeling in the presence of an outlet obstruction.Dr. Geoffrey Recktenwald, Michigan State University Dr. Recktenwald is a lecturer in Mechanical Engineering at Michigan State University where he teaches courses in in mechanics and mathematical methods. He completed his degree in Theoretical and Applied Mechanics at Cornell University in stability and parametric excitation. His active areas of research are dynamic stability, online assessment, and instructional pedagogy. c American Society
his Ph.D. from Yale University. He is currently teaching a course in the First Year Program as well as a course that has prerequisites in both the first and second year of the program. His professional interests include computer-aided engineering and design. Page 12.357.1© American Society for Engineering Education, 2007 Civil and Mechanical Engineering Students Learning Mechanics in a Multidisciplinary Engineering Foundation SpiralThis paper describes how mechanical and civil engineering students are introduced to anddevelop an understanding of mechanics concepts through a sequence of integrated
engineering student through Engineering Mechanics: Statics and many other derivativecourses. Unfortunately the teaching methods used to convey the information also have beenrelatively fixed. A quick review of available textbooks indicates the same rote presentationsequence (some books are on their 12th edition). In contrast, the QEP mandated overt, intentionalpresentation of critical thinking. Could critical thinking be included overtly in a well established,fundamental, almost archaic engineering course? Yes many ways of requiring critical analysis Page 15.1007.4and evaluation can be adapted to statics with only minor tweaking of the course