AC 2011-148: PROGRAM FOR STUDENT RETENTION AND SUCCESSIN ENGINEERINGRafic Bachnak, Texas A&M International University Dr. Bachnak is a Professor at Texas A&M International University (TAMIU). He received his B.S., M.S., and Ph.D. degrees in Electrical from Ohio University in 1983, 1984, and 1989, respectively. Prior to joining TAMIU in 2007, Dr. Bachnak was on the faculty of Texas A&M-Corpus Christi, Northwestern State University, and Franklin University. His experience includes several fellowships with NASA and the US Navy Laboratories and employment with Koch Industries. Dr. Bachnak is a registered Professional Engineer in the State of Texas, a senior member of IEEE and ISA, and a member of ASEE
of Science in Biological Engineering from LSU. She completed her Ph.D. in Biomedical Engineering at Mississippi State University (MSU). She was the first African American to obtain a graduate degree in Biological Engineering from Louisiana State University, and the first African American to obtain a Ph.D. in Biomedical Engineering from Mississippi State University. Dr. Williams is an Associate Professor in Biomedical Engineering at the University of Florida. She directs the Tissue Mechanics, Microstructure, and Modeling Laboratory (TM3). Her team studies the mechanics of biological tissues and organs using experiments and computational tools. While a faculty at Mississippi State, she was recognized by Mis
math and engineering courses, contextualized teaching approaches thatincorporate NASA-related content as hands-on activities and projects are developed. A ten-weeksummer research internship program specifically designed for community college students hasalso been developed to provide research opportunities on various engineering topics includingperformance-based earthquake engineering, circuit design for biomedical applications, andembedded systems design. Additionally, a group of community college students are selected toparticipate in year-long upper-division and senior design courses at San Francisco State Universityto help develop skills and attributes needed to succeed in a four-year engineering program. Resultsfrom the first year of
AC 2008-1614: ATTRACTING MINORITY STUDENTS TO SCIENCE ANDENGINEERINGRafic Bachnak, Texas A&M International University Dr. Bachnak is Professor of Systems Engineering at Texas A&M International University. He received his B.S., M.S., and Ph.D. degrees in Electrical and Computer Engineering from Ohio University in 1983, 1984, and 1989, respectively. Prior to joining TAMIU in 2007, Dr. Bachnak was on the faculty of Texas A&M-Corpus Christi, Northwestern State University, and Franklin University. His experience includes several fellowships with NASA and the US Navy Laboratories and summer employment with Koch Industries. Dr. Bachnak is a registered Professional Engineer in the
- sity’s Mechanical Engineering & Mechanics Department. He has also held a research appointment at the Department of Energy’s Los Alamos National Laboratory in New Mexico. Augmenting his scientific in- terests, Daniel serves as a STEM educator working to improve minority representation in STEM through high-impact research experiences. As an Innovation Advisor to Elsevier’s Academic Engineering Solu- tions Library Advisory Board (AES-LAB), he partners with librarians to create democratized approaches to 21st century information literacy education on a global scale,Mr. Brian J Wisner, Drexel University Brian is a PhD Candidate in the Department of Mechanical Engineering and Mechanics at Drexel Univer- sity. Brian
Paper ID #18490Listening and Negotiation IIDr. Adjo A Amekudzi-Kennedy, Georgia Institute of Technology Professor Adjo Amekudzi-Kennedy is Professor and Associate Chair for Global Engineering Leader- ship and Research Development in the School of Civil and Environmental Engineering at Georgia Tech, with responsibilities for managing and expanding the School’s global/leadership education and research programs and impact, and directing the Institute’s Global Engineering Leadership Minor Program. Her research, teaching and professional activities focus on civil infrastructure decision making to promote sustainable
committee for several years. He has invested over twenty-five years in the development and maintenance of a multimillion dollar manufacturing laboratory facility complete with a full scale, fully integrated manufacturing sys- tem. Professor Harriger has been a Co-PI on two NSF funded grants focused on aerospace manufacturing education and is currently a Co-PI on the NSF funded TECHFIT project, a middle school afterschool pro- gram that teaches students how to use programmable controllers and other technologies to design exercise games. Additionally, he co-organizes multiple regional automation competitions for an international con- trols company.Dr. Michael Gerald Flynn, College of CharlestonSusan Marie Flynn, College of
- cations on engineering education and design. His primary professional interest areas include: Engineering Education, CADD, Design, Fracture Mechanics, Materials Science and Alternative Energy Options. Dur- ing the 2003-2004 academic year, Dr. Pieri spent a sabbatical teaching math & engineering courses at Turtle Mountain Community College on the Turtle Mountain Reservation in North Dakota. Since the fall of 2008, Dr Pieri has held the position of Coordinator of Tribally Controlled Colleges NDSU Partner- ships under joint appointment to the Equity, Diversity and Global Outreach Division, Extension Service and Mechanical Engineering Department. In this unique position, he actively works to develop authentic
program.Mrs. Lori Nelson, Nueta Hidatsa Sahnish College Lori Nelson began her professional experience as an Industrial Engineer working the capacity of business process manager for a major U.S. aerospace manufacturing firm. This role provided functional consulting for supply chain with key ownership responsibility ensuring appropriate data design of master data, IT architecture and solution design for all ERP solutions across the organization. She holds a Masters of Arts in Teaching Mathematics from Minot State University, a Bachelor of Science degree in Industrial Engineering and Management from North Dakota State University, and post-masters certificate in Experiential Education through Equine Assisted Learning from
American Veterinary Medical Association http://www.avma.org/AWAA American Water Works Association http://www.awwa.org/Biophysical Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.bfrl.nist.orgESA Ecological Society of America http://www.esa.org/FASEB Federation of American Societies for Experimental Biology http://www.faseb.org/FMB Federation of Master Builders http://www.fmb.org.ukFMS Federation of Materials Societies http://www.fms.orgGeochemical Society
services to foster success in Calculus I as it isknown to be a roadblock for student success in STEM fields. The second activity supports theimplementation of Challenge-Based Instruction (CBI) in selected key courses. CBI, a form ofinductive learning, has been shown to be a more effective approach to the learning process thanthe traditional deductive pedagogy. The third activity supports faculty development workshopson CBI techniques and other locally developed teaching tools with a focus on increasing studentsuccess, and finally the fourth activity develops and supports pathways to STEM fields betweenSTC and UTPA. This project provides a model that is expected to have a significant impact onthe number of STEM graduates and that will be simple to
design, open-ended problem solving, laboratory work, etc. As the learning styles ofstudents can vary considerably [1-7], achieving this goal can be very challenging even whenother variables which impact student learning are taken into account. Various teaching methodssuch as case studies, projects based learning, contexts based learning, computer based learning,etc, address the learning styles of different student populations [2], [8-11]. In this paper, weconcentrate on student populations who favor “learning by doing” [3], [6]. We will use the term“learning by doing” to refer to the approach of learning by solving many individual problems orthrough practice as opposed to studying the theory with which the problems are solved.The instructor of a
University of Pennsylvania and School District of Philadelphia rely on a successful partnership in order to close the STEM equity gap, enhance learning, and increase access and awareness, for students, teachers, parents and community members. IntroductionThe collaboration between the Secondary Robotics Initiative (SRI) and School of Engineeringand Applied Science (SEAS) serves as a model of a sustainable K-12 and universitypartnership. The Secondary Robotics Initiative provides pre-engineering programs for 6th -12thgrade students. Linked with the GRASP3 (General Robotics, Automation, Sensing andPerception) laboratory at SEAS, the SRI empowers both students and teachers while
), Energy &Environment, Modeling & Simulation, Sensors, and Transportation & Healthcare.Thanks to the efforts of Dr. Mary Juhas, Program Director for Diversity & Outreach atNational Science Foundation, each of the 105 minute tracks had a presentation from oneNational Science Foundation Division Director with responsibility for an area with somerelevance to the track. The participation of the Division Director was organized for themutual benefit of the workshop attendees and the Division Directors. The slides for mostof the presentations is available from the Workshop organizers at NCA&T.A laboratory tour and poster presentation to showcase the equipment andaccomplishments of several Historically Black Colleges (HBCUs) was
participate in the REM program. Eachsemester, the REM program began with a Research Studio lasting approximately 8 hours beforestudents began the laboratory experience. The Research Studio included an introduction of tissuetest systems and overall EFRI project goals, completion of laboratory safety training, anintroduction to research ethics, technical writing, and basic laboratory practices, participation ina team building exercise, discussion of the projects to which each student would be exposed, anddiscussion of the expectations for and of RPs. Once RPs completed the Research Studio, each RPwas paired with a graduate student mentor and the mentor’s project. After completion of theResearch Studio, each student was required to spend 3 hours on lab
weeks of summer 2010. In this case, the student took a 3 credit course indata communications, and the goals for the undergraduate research were closely alignedwith the topics that the student was learning in that class. The project focused on Fourieranalysis of periodic signals and its applications to data communications. This particularproject was tailored to fit the short time window of the program, which was total of sevenweeks with research posters due by the end of the 5th week. The project and the 3-creditcourse provided the student with the opportunity to: Apply knowledge of mathematics to solve engineering problems; Design and conduct experiments in the laboratory; Use laboratory equipment to solve engineering
Creativity and Personality Involvement in the Undergraduate Science Laboratory. Journal of College Science Teaching, 21(4), 226-229.16. Kremmer, J. F., & Bringle, R. G., 2000. The Effects of an Intensive Research Experience on the Careers of Talented Undergraduates. Journal of Research and Development in Education, 24(1), 1–5.17. Kardash, C. M., 2000. Evaluation of an Undergraduate Research Experience: Perceptions of Undergraduate Interns and their Faculty Mentors. Journal of Educational Psychology, 92(1), 191-201.18. Boyer, Paul (Ed), 2010. Ancient Wisdom, Modern Science: The Integration of Native Knowledge in Math and Science at Tribally Controlled Colleges and Universities, Published by Salish Kootenai College Press, Pablo
, where he has served since 1987. He is currently the Pope Professor of chemical engineering at BYU and an Adjunct Research Professor in the Bioengineering Department of the University of Utah. During his 24 years at BYU, his teaching has been in the areas of materials, polymers, and transport phenomena. His research has spanned many disciplines ranging from biomedical material surfaces and composite materials to his current work in controlled drug and gene delivery. With colleagues and students at BYU and other institutions, he has more than 110 peer-reviewed journal publications.Prof. Morris D. Argyle, Brigham Young University
newcode in hardware. In addition, they applied Gabor filter functions for edge detection, whichallows the detection of multiple edges in the same image an improvement to the previous versionof the software. Another improvement was the use of multiple simple and complex cell functionsto scan the image frame, allowing a better simulation of the biological brain function.In 2013 the COMET’s program was expanded to include a Mechanical Engineering group. The Page 26.251.8four interns in the group worked on the development of a low-cost dynamic plant and dataacquisition Haptic Paddle laboratory apparatus for use in teaching upper division topics
of Plant Biologists http://www.aspb.org/ASPP American Society of Plant Physiologists http://www.aspp.org/ASQ American Society for Quality http://www.asq.org/ASTC Association of Science Technology Centers http://www.astc.orgAVMA American Veterinary Medical Association http://www.avma.org/AWAA American Water Works Association http://www.awwa.org/Biophysical Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.bfrl.nist.orgESA Ecological Society of America
Biologists http://www.aspb.org/ASPP American Society of Plant Physiologists http://www.aspp.org/ASQ American Society for Quality http://www.asq.org/ASTC Association of Science Technology Centers http://www.astc.orgAVMA American Veterinary Medical Association http://www.avma.org/AWAA American Water Works Association http://www.awwa.org/Biophysical Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.nist.gov/bfrl/ESA Ecological Society of America http://www.esa.org/FASEB
Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.nist.gov/bfrl/ESA Ecological Society of America http://www.esa.org/FASEB Federation of American Societies for Experimental Biology http://www.faseb.org/FMB Federation of Master Builders http://www.fmb.org.ukFMS Federation of Materials Societies http://www.materialsocieties.org/Geochemical Society http://www.geochemsoc.org/Geological Society of America http://www.geosociety.org/HFES Human Factors and Ergonomics Society
AC 2011-592: ENHANCING THE INTEREST, PARTICIPATION, AND RE-TENTION OF UNDERREPRESENTED STUDENTS IN ENGINEERINGTHROUGH A SUMMER ENGINEERING INSTITUTEWenshen Pong, San Francisco State University Wenshen Pong received his Ph.D. in Structural Engineering from the State University of New York at Buffalo. He joined the School of Engineering at San Francisco State University in 1998. He teaches courses in Civil/Structural Engineering. He is Director of the School of Engineering at SFSU. Dr. Pong is a registered Professional Engineer in California. He is a member of the American Society of Civil Engineers and the Structural Engineers Association of California. He has published over forty technical papers in the areas of
financial support in the form of teaching and graduate researchassistantships, King and Chepyator-Thomson7, Willie, Grady, and Hope5, and Wilson13concluded that financial support is a critical factor that influences graduate student persistence ofAfrican Americans. In testing a model of degree progress, Toliver14 found that degree progresswas particularly reduced when African American students did not have financial support.Lovitts15 observed that while fellowships are used to recruit minorities into graduate schools, thisform of support does not allow students to integrate into the academic department and degreecompletion is significantly reduced. St. John and Andrieu16 recommend “comprehensive aidpackages” for graduate students, as their research
demonstrate specific capabilities and technologies at MIs; • Opportunity to team-up with NASA researchers; and • Enhancement of undergraduate and graduate research at Minority Serving Institutions (MSIs).In addition, during the tenure of a fellowship, fellows receive a series of professional trainingcourses designed by UNCFSP. Some of the topics covered by the professional training sessionsinclude leadership development, strategic management, institutional advancement, and externalrelations and STEM policy.IntroductionAfter many years of teaching, research, and administrative experience at Alabama A&MUniversity, a Minority Serving Institution (MSI), I was fortunate to have the opportunity to applyfor the NASA Administrator’s
disabilitieswhile the lectures and discussions will center on the impact of disabilities as well as thepsychosocial aspects of those disabilities. The sensitivity training module includes roleplaying and simulation to explore the interaction of a student with a disability and his/herenvironment. The workshop will also focus on the barriers to learning that are oftenapparent yet frequently overlooked within the classroom, laboratories, campus, andcommunity.School teachers are continually challenged with their task to teach 30 or more students,four or more times a day. If we add to that task the need to accommodate a student with adisability, then the challenge may become overwhelming and may cause the teacher to beless effective. The goal of the workshops
Paper ID #9831A STEM Transfer and Retention Program at Texas A&M International Uni-versityDr. Fernando Garcia Gonzalez, Florida Golf Coast University Dr. Fernando Gonzalez joined FGCU as an Assistant Professor in the Computer Engineering Program in the fall of 2013. Previously he was an Assistant Professor within the Engineering, Math, and Physics Department at Texas A&M International University in Laredo, Texas. Prior to that he was a Technical Staff Member (researcher) for the U.S. Department of Energy at Los Alamos National Laboratory in Los Alamos, New Mexico. Dr. Gonzalez was also a faculty member in the
Transactions on Semiconductor Manufacturing from 1997-2001 and was a National Science Foundation "National Young Investigator" (1993-98). He was a National Science Foundation and an AT&T Bell Laboratories graduate fellow, and has worked as a member of the technical staff at AT&T Bell Laboratories in Murray Hill, NJ. He is a Fellow of the American Association for the Advancement of Science and a member of the National Advisory Board of the National Society of Black Engineers (NSBE). Page 14.464.2© American Society for Engineering Education, 2009 Development and Implementation
AC 2010-1761: BROADENING STUDENT RESEARCH EXPERIENCES THROUGHSUMMER EXCHANGE PROGRAM ACROSS CAMPUSESAbhijit Nagchaudhuri, University of Maryland, Eastern Shore Abhijit Nagchaudhuri is a Professor in the Department of Engineering and Aviation Sciences at University of Maryland Eastern Shore. Prior to joining UMES he worked in Turabo University in San Juan , PR as well as Duke University in Durham North Carolina as Assistant Professor and Research Assistant Professor, respectively. Dr. Nagchaudhuri is a member of ASME and ASEE professional societies and is actively involved in teaching and research in the fields of engineering mechanics, robotics, systems and control, design of mechanical and
-on activities1- 3, field trips4, 5,summer workshops6, 7, competitions8, and software training9. This paper describes a newprogram, STEM Recruitment, Retention, and Graduation (STEM-RRG), designed toincrease the number of minority students who graduate with a degree in science,engineering, or mathematics. Specifically, the goals and objectives to be accomplishedunder STEM-RRG are: a. Recruit minority students into STEM majors at TAMIU; b. Provide summer enrichment workshops to minority students; c. Provide internships and research assistantships to minority students; d. Provide professional development activities to STEM faculty who teach introductory science courses, including mathematics, engineering, physics, and